
Kerneltron: Support Vector `Machine' in Silicon

Roman Genov and Gert Cauwenberghs

Department of Electrical and Computer Engineering

Johns Hopkins University, Baltimore, MD, 21218, USA

froman,gertg@jhu.edu
http://bach.ece.jhu.edu

Abstract. Detection of complex objects in streaming video poses two

fundamental challenges: training from sparse data with proper general-

ization across variations in the object class and the environment; and

the computational power required of the trained classi�er running real-

time. The Kerneltron supports the generalization performance of a Sup-

port Vector Machine (SVM) and o�ers the bandwidth and e�ciency of

a massively parallel architecture. The mixed-signal VLSI processor is

dedicated to the most intensive of SVM operations: evaluating a ker-

nel over large numbers of vectors in high dimensions. At the core of

the Kerneltron is an internally analog, �ne-grain computational array

performing externally digital inner-products between an incoming vec-

tor and each of the stored support vectors. The three-transistor unit

cell in the array combines single-bit dynamic storage, binary multiplica-

tion, and zero-latency analog accumulation. Precise digital outputs are

obtained through oversampled quantization of the analog array outputs

combined with bit-serial unary encoding of the digital inputs. The 256

input, 128 vector Kerneltron measures 3 mm � 3 mm in 0.5 �m CMOS,

delivers 6.5 GMACS throughput at 5.9 mW power, and attains 8-bit

output resolution.

1 Introduction

Support vector machines (SVM) [1] o�er a principled approach to machine learn-

ing combining many of the advantages of arti�cial intelligence and neural network

approaches. Underlying the success of SVMs are mathematical foundations of

statistical learning theory [2]. Rather than minimizing training error (empiri-

cal risk), SVMs minimize structural risk which expresses an upper bound on the

generalization error, i.e., the probability of erroneous classi�cation on yet-to-be-

seen examples. This makes SVMs especially suited for adaptive object detection

and identi�cation with sparse training data.

Real-time detection and identi�cation of visual objects in video from exam-

ples is generally considered a hard problem for two reasons. One is the large

degree of variability in the object class, i.e., orientation and illumination of the

object or occlusions and background clutter in the surrounding, which usually

necessitates a large number of training examples to generalize properly. The



other is the excessive amount of computation incurred during training, and even

in run-time.

Support vector machines have been applied to visual object detection, with

demonstrated success in face and pedestrian detection tasks [3{6]. Unlike ap-

proaches to object detection that rely heavily on hand-crafted models and motion

information, SVM-based systems learn the model of the object of interest from

examples and work reliably in absence of motion cues. To reduce the computa-

tional burden of real-time implementation to a level that can be accommodated

with available hardware, a reduced set of features are selected from the data

which also result in a reduced number of support vectors [5]. The reduction in

implementation necessarily comes at a loss in classi�cation performance, a loss

which is more severe for tasks of greater complexity.

The run-time computational load is dominated by evaluation of a kernel be-

tween the incoming vector and each of the support vectors. For a large class

of permissible kernels, which include polynomial splines and radial kernels, this

computation entails matrix-vector multiplication in large dimensions. For the

pedestrian detection task in unconstrained environments [5], highest detection

at lowest false alarm is achieved for very large numbers (thousands) of input di-

mensions and support vectors, incurring millions of matrix multiply-accumulates

(MAC) for each classi�cation. The computation recurs at di�erent positions and

scales across each video frame.

The Kerneltron o�ers a factor 100-10,000 improvement in computational

e�ciency (throughput per unit power) over the most advanced digital signal

processors available today. It a�ords this level of e�ciency at the expense of

speci�city: the VLSI architecture is dedicated to massively parallel kernel com-

putation. Speed can be traded for power dissipation. Lower power is attractive

in portable applications of kernel-based pattern recognition, such as visual aids

for the blind [7].

Section 2 brie
y summarizes feature extraction and SVM classi�cation for

object detection in streaming video. Section 3 describes the architecture and

circuit implementation of the Kerneltron. Experimental results, scalability issues

and application examples are discussed in Section 4.

2 Object Detection with Support Vector Machines

A support vector machine is trained with a data set of labeled examples. For

pattern classi�cation in images, relevant features are typically extracted from

the training set examples using redundant spatial �ltering techniques, such as

overcomplete wavelet decomposition [4]. The classi�er is trained on these feature

vectors. In run time, images representing frames of streaming video are scanned

by moving windows of di�erent dimensions. For every unit shift of a moving

window, a wavelet feature vector is computed and presented to the SVM classi�er

to produce a decision. The general block diagram of such a system is outlined

in Fig. 1. A brief functional description of the major components follows next.



IN
P

U
T

 M
O

D
U

L
E

O
U

T
P

U
T

 M
O

D
U

L
E

CORE RECOGNITION PROCESSOR

WAVELET

DECOMPOSITION

SUPPORT

VECTOR

MACHINE

sr Anr Xn Xmn ym

Fig. 1. Functional block diagram of the SVM classi�er. The core of the system is

a support vector machine processor for general object detection and classi�cation.

An overcomplete wavelet decomposition of the incoming sensory data at the input

generates redundant input features to the SVM, providing for robust and relatively

invariant classi�cation performance.

2.1 Overcomplete Wavelet Decomposition

An overcomplete wavelet basis enables the system to handle complex shapes and

achieve a precise description of the object class at adequate spatial resolution for

detection [4]. The transformation of the sensory data s into the feature vector

X is of the linear form

Xn =

RX

r=1

Anr sr; n = 1; � � � ; N; (1)

where the wavelet coe�cients Anr form an overcomplete basis i.e., N > R.

In visual object detection overcomplete Haar wavelets have been successfully

used on pedestrian and face detection tasks [4, 5]. Haar wavelets are attractive

because they are robust and particularly simple to compute, with coe�cients

Anr that are either �1 or 1.

2.2 Support Vector Classi�cation

Classi�cation of the wavelet transformed features is performed by a support

vector machine (SVM) [1]. From a machine learning theoretical perspective [2],

the appealing characteristics of SVMs are:

1. The learning technique generalizes well even with relatively few data points

in the training set, and bounds on the generalization error can be directly

estimated from the training data.

2. The only parameter that needs tuning is a penalty term for misclassi�cation

which acts as a regularizer [8] and determines a trade-o� between resolution

and generalization performance [9].



3. The algorithm �nds, under general conditions, a unique separating decision

surface that maximizes the margin of the classi�ed training data for best

out-of-sample performance.

SVMs express the classi�cation or regression output in terms of a linear

combination of examples in the training data, in which only a fraction of the

data points, called \support vectors," have non-zero coe�cients. The support

vectors thus capture all the relevant data contained in the training set. In its

basic form, a SVM classi�es a pattern vector X into class y 2 f�1;+1g based

on the support vectors Xm and corresponding classes ym as

y = sign(

MX

m=1

�m ym K(Xm;X)� b); (2)

where K(�; �) is a symmetric positive-de�nite kernel function which can be freely

chosen subject to fairly mild constraints [1]. The parameters �m and b are de-

termined by a linearly constrained quadratic programming (QP) problem [2, 10],

which can be e�ciently implemented by means of a sequence of smaller scale,

subproblem optimizations [3], or an incremental scheme that adjusts the solu-

tion one training point at a time [11]. Most of the training data Xm have zero

coe�cients �m; the non-zero coe�cients returned by the constrained QP opti-

mization de�ne the support vector set. In what follows we assume that the set

of support vectors and coe�cients �m are given, and we concentrate on e�cient

run-time implementation of the classi�er.

Several widely used classi�er architectures reduce to special valid forms of

kernels K(�; �), like polynomial classi�ers, multilayer perceptrons1, and radial

basis functions [13]. The following forms are frequently used:

1. Inner-product based kernels (e.g., polynomial; sigmoidal connectionist):

K(Xm;X) = f(Xm �X) = f(

NX

n=1

Xmn Xn) (3)

2. Radial basis functions (L2 norm distance based):

K(Xm;X) = f(kXm �Xk) = f((

NX

n=1

jXmn �Xnj
2)

1

2 ) (4)

where f(�) is a monotonically non-decreasing scalar function subject to the Mer-

cer condition on K(�; �) [2, 8].

With no loss of generality, we concentrate on kernels of the inner product

type (3), and devise an e�cient scheme of computing a large number of high-

dimensional inner-products in parallel. Computationally, the inner-products com-

prise the most intensive part in evaluating kernels of both types (3) and (4).

1 with logistic sigmoidal activation function, for particular values of the threshold

parameter only



Indeed, radial basis functions (4) can be expressed in inner-product form:

f(kXm �Xk) = f((�2Xm �X+ kXmk
2 + kXk2)

1

2 ); (5)

where the last two terms depend only on either the input vector or the sup-

port vector. These common terms are of much lower complexity than the inner-

products, and can be easily pre-computed or stored in peripheral registers.

The computation of the inner-products takes the form of matrix-vector mul-

tiplication (MVM),
P

N

n=1
Xmn Xn; m = 1; : : :M , where M is the number of

support vectors. For large scale problems as the ones of interest here, the dimen-

sions of the matrix M �N are excessive for real-time implementation even on

a high-end processor. As a point of reference, consider the pedestrian and face

detection task in [5], for which the feature vector length N is 1,326 wavelets per

instance, and the number of support vectors M is in excess of 4,000. To cover

the visual �eld over the entire scanned image at reasonable resolution (500 im-

age window instances through a variable resolution search method) at video rate

(30 frames per second), a computational throughput of 75� 109 multiply-and-

accumulate operations per second, is needed. The computational requirement

can be relaxed through simplifying and further optimizing the SVM architec-

ture for real-time operation, but at the expense of classi�cation performance [4,

5].

3 Kerneltron: Massively Parallel VLSI Kernel Machine

The Kerneltron o�ers the computational power required for the unabridged SVM

architecture to run in real-time, for optimal out-of-sample classi�cation perfor-

mance. The architecture is described next.

3.1 Core Recognition VLSI Processor

At the core of the system is a recognition engine, which very e�ciently imple-

ments kernel-based algorithms, such as support vector machines, for general pat-

tern detection and classi�cation. The implementation focuses on inner-product

computation in a parallel architecture.

Both wavelet and SVM computations are most e�ciently implemented on the

same chip, in a scalable VLSI architecture as illustrated schematically in Fig. 2.

The diagram is the 
oorplan of the Kerneltron, with matrices projected as 2-D

arrays of cells, and input and output vector components crossing in perpendicular

directions alternating from one stage to the next. This style of scalable archi-

tecture also supports the integration of learning functions, through local outer

product parameter updates [12], compatible with the recently developed incre-

mental SVM learning rule [11]. The architecture maintains low input/output

data rate. Digital inputs are fed into the processor through a properly sized se-

rial/parallel converter shift register. A unit shift of a scanning moving window

in an image corresponds to one shift of a new pixel per classi�cation cycle, while

a single scalar decision is produced at the output.



sr

Anr Xn

WAVELET DICTIONARY

SERIAL/PARALLEL CONVERTER

s

MATRIX-VECTOR MULTIPLIER

KERNEL LOOK-UP TABLE AND SVM INFERENCE

C
O

D
E

R

y
X Xm

.

αmymf(X Xm).

Xmn

Fig. 2. The architecture of the core recognition processor, combining overcomplete

wavelet decomposition with generalized support vector machine classi�cation. Com-

munication with outside modules is through a serial digital input/output interface

for maximal 
exibility and programmability, while the core internal computations are

parallel and analog for optimal e�ciency.

The classi�cation decision is obtained in digital domain by thresholding the

weighted sum of kernels. The kernels are obtained by mapping the inner-products

X �Xm through the function f(�) stored in a look-up table.

By virtue of the inner-product form of the kernel, the computation can be

much simpli�ed without a�ecting the result. Since both the wavelet feature ex-

traction and the inner-product computation represent linear transformations,

they can be collapsed into a single linear transformation by multiplying the two

matrices:

Wmr =

NX

n=1

XmnAnr: (6)

Therefore the architecture can be simpli�ed to one that omits the (explicit)

wavelet transformation, and instead transforms the support vectors.2 For sim-

plicity of the argument, we proceed with the inner-product architecture exclud-

ing the overcomplete wavelet feature extraction stage, bearing in mind that the

approach extends to include wavelet extraction by merging the two matrices.

2 Referred to the input prior to wavelet transformation, support vectors sm need to

be transformed twice: Wmr =
P

N

n=1

P
S

p=1
AnpAnrsmp.



3.2 Mixed-Signal Computation

Computing inner-products between an input vectorX and template vectorsWm

in parallel is equivalent to the operation of matrix-vector multiplication (MVM)

Ym =

N�1X

n=0

WmnXn; (7)

with N -dimensional input vector Xn, M -dimensional output vector Ym, and

M�N matrix of coe�cientsWmn. The matrix elementsWmn denote the support

vectors Xmn, or the wavelet transformed support vectors (6) for convenience of

notation.3

Internally Analog, Externally Digital Computation The approach com-

bines the computational e�ciency of analog array processing with the precision

of digital processing and the convenience of a programmable and recon�gurable

digital interface.

The digital representation is embedded in the analog array architecture, with

matrix elements stored locally in bit-parallel form

Wmn =

I�1X

i=0

2�i�1w(i)

mn
(8)

and inputs presented in bit-serial fashion

Xn =

J�1X

j=0


jx
(j)

n
; (9)

where the coe�cients 
j are assumed in radix two, depending on the form of

input encoding used. The MVM task (7) then decomposes into

Ym =

N�1X

n=0

WmnXn =

I�1X

i=0

2�i�1Y (i)

m
(10)

with MVM partials

Ym
(i) =

J�1X

j=0


jY
(i;j)

m
; (11)

and

Ym
(i;j) =

N�1X

n=0

w(i)

mn
x(j)
n

: (12)

The binary-binary partial products (12) are conveniently computed and accumu-

lated, with zero latency, using an analog MVM array [14]-[17]. For this purpose

we developed a 1-bit multiply-and-accumulate CID/DRAM cell.

3 In the wavelet transformed case, s should be substituted for X in what follows.



RS
(i)

Vout
(i)

RS
(i)

Vout
(i)

M1 M2 M3

0
Vdd/2
Vdd

DRAM
CID

Write

Compute

0
Vdd/2
Vdd

0
Vdd/2
Vdd

x
(j)

w
(i)

x
(j)

mn n

n

m

m

m

m

(a) (b)

Fig. 3. (a) CID computational cell with integrated DRAM storage. Circuit diagram,

and charge transfer diagram for active write and compute operations. (b) Micrograph

of the Kerneltron prototype, containing containing an array of 256� 128 CID/DRAM

cells, and a row-parallel bank of 128 algorithmic �� ADCs. Die size is 3 mm� 3 mm

in 0.5 �m CMOS technology.

CID/DRAM Cell and Array The unit cell in the analog array combines a

CID (charge injection device [18]) computational element [16, 17] with a DRAM

storage element. The cell stores one bit of a matrix element wmn
(i), performs

a one-quadrant binary-unary (or binary-binary) multiplication of wmn
(i) and

xn
(j) in (12), and accumulates the result across cells with common m and i

indices. The circuit diagram and operation of the cell are given in Fig. 3 (a).

It performs non-destructive computation since the transferred charge is sensed

capacitively at the output. An array of cells thus performs (unsigned) binary-

unary multiplication (12) of matrix wmn
(i) and vector xn

(j) yielding Ym
(i;j), for

values of i in parallel across the array, and values of j in sequence over time. A

256 � 128 array prototype using CID/DRAM cells is shown in Fig. 3 (b).

To improve linearity and to reduce sensitivity to clock feedthrough, we use

di�erential encoding of input and stored bits in the CID/DRAM architecture

using twice the number of columns and unit cells as shown in Fig. 4 (a). This

amounts to exclusive-OR (XOR), rather than AND, multiplication on the analog

array, using signed, rather than unsigned, binary values for inputs and weights,

xn
(j) = �1 and wmn

(i) = �1.

In principle, the MVM partials (12) can be quantized by a bank of 
ash

analog-to-digital converters (ADCs), and the results accumulated in the digital



AND AND
XOR

RS
(i)
m

Vout
(i)
m

w
(i)
mn x

(j)
n x

(j)
n

w
(i)
mn

(a)

(b)

Fig. 4. (a) Two charge-mode AND cells con�gured as an exclusive-OR (XOR)multiply-

and-accumulate gate. (b) Measured linearity of the computational array con�gured for

signed multiplication on each cell (XOR con�guration). Waveforms shown are, top to

bottom: the analog voltage output, V out
(i)
m , on the sense line; input data (in common

for both input, xn
(j), and weight, wmn

(i), shift register); and input shift register clock.

domain according to (11) and (10) to yield a digital output resolution exceed-

ing the analog precision of the array and the quantizers [19]. Alternatively, an

oversampling ADC accumulates the sum (11) in the analog domain, with inputs

encoded in unary format (
i = 1). This avoids the need for high-resolution 
ash

ADCs, which are replaced with single-bit quantizers in the delta-sigma loop.

Oversampling Mixed-Signal Array Processing The precision of computa-

tion is limited by the resolution of the analog-to-digital converters (ADC) digi-

tizing the analog array outputs. The conventional delta-sigma (��) ADC design

paradigm allows to reduce requirements on precision of analog circuits to attain

high resolution of conversion, at the expense of bandwidth. In the presented ar-

chitecture a high conversion rate is maintained by combining delta-sigma analog-

to-digital conversion with oversampled encoding of the digital inputs, where

the delta-sigma modulator integrates the partial multiply-and-accumulate out-

puts (12) from the analog array according to (11).

Fig. 5 depicts one row of matrix elements Wmn in the �� oversampling

architecture, encoded in I = 4 bit-parallel rows of CID/DRAM cells. One bit of

a unary-coded input vector is presented each clock cycle, taking J clock cycles to



+
ADC

Q

+

ADC

+

ANALOG

DIGITAL

+
ADC +

+

+
ADC +

+

0X

SERIAL BINARY-TO-UNARY CONVERTER

0x
(15)

1 N-1

x
(0) x

(0)
x

(0)

N-110

x
(15)

x
(15)

1/2

1/2

1/2

w
(3)

m,N-1
+

+

w
(3)

m,1
+

+

w
(3)

m,0
+

w
(2)

m,0
+

w
(1)

m,0
+

w
(0)

m,0
+

W

w
(2)

m,1
+

+

w
(1)

m,1
+

+

w
(0)

m,1
+

+

w
(2)

m,N-1
+

+

w
(1)

m,N-1
+

+

w
(0)

m,N-1
+

+
m,0 W m,1 Wm,N-1

Y
(0,15)

m
Y

(0,0)
m

Y
(1,15)

m
Y

(1,0)
m

Y
(2,15)

m
Y

(2,0)
m

Y
(3,15)

m
Y

(3,0)
m

∆Σ

∆Σ

∆Σ

∆Σ

m

X X1 N-1

Fig. 5. Block diagram of one row of the matrix with binary encoded elements w(i)
mn,

for a single m and I = 4. Data 
ow of bit-serial unary encoded inputs x(j)n and

corresponding partial product outputs Y (i;j)
m, with J = 16 bits. The full product for

a single row Y
(i)

m is accumulated and quantized by a delta-sigma ADC. The �nal

product is constructed in the digital domain according to (10).

complete a full computational cycle (7). The data 
ow is illustrated for a digital

input series xn
(j) of J = 16 unary bits.

Over J clock cycles, the oversampling ADC integrates the partial prod-

ucts (12), producing a decimated output

Q(i)

m
�

J�1X

j=0


jY
(i;j)

m
; (13)

where 
j = 1 for unary coding of inputs. Decimation for a �rst-order delta-sigma

modulator is achieved using a binary counter. Higher precision are obtained in

the same number of cycles J by using a residue resampling extended counting

scheme [21].

Additional gains in precision can be obtained by exploiting binomial statistics

of binary terms in the analog summation (12) [20]. In the present scheme, this

would entail stochastic encoding of the digital inputs prior to unary oversampled

encoding.



Table 1. Measured Performance

Technology 0.5 �m CMOS

Area 3mm � 3mm

Power 5.9 mW

Supply Voltage 5 V

Dimensions 256 inputs � 128 templates

Throughput 6.5 GMACS

Output Resolution 8-bit

4 Experimental Results and Discussion

4.1 Measured Performance

A prototype Kerneltron was integrated on a 3 � 3 mm2 die and fabricated in

0.5 �m CMOS technology. The chip contains an array of 256� 128 CID/DRAM

cells, and a row-parallel bank of 128 algorithmic �� ADCs. Fig. 3 (b) depicts

the micrograph and system 
oorplan of the chip.

The processor interfaces externally in digital format. Two separate shift reg-

isters load the templates (support vectors) along odd and even columns of the

DRAM array. Integrated refresh circuitry periodically updates the charge stored

in the array to compensate for leakage. Vertical bit lines extend across the array,

with two rows of sense ampli�ers at the top and bottom of the array. The re-

fresh alternates between even and odd columns, with separate select lines. Stored

charge corresponding to matrix element values can also be read and shifted out

from the chip for test purposes. All of the supporting digital clocks and control

signals are generated on-chip.

Fig. 4 (b) shows the measured linearity of the computational array, con�g-

ured di�erentially for signed (XOR) multiplication. The case shown is where all

complementary weight storage elements are actively set, and an alternating se-

quence of bits in blocks N is shifted through the input register.4 For every shift

in the input register, a computation is performed and the result is observed on

the output sense line. The array dissipates 3.3 mW for a 10 �s cycle time. The

bank of �� ADCs dissipates 2.6 mW yielding a combined conversion rate of

12.8 Msamples/s. Table 1 summarizes the measured performance.

4.2 System-Level Performance

Fig. 6 compares template matching performed by a 
oating point processor and

by the Kerneltron, illustrating the e�ect of quantization and limited precision in

the analog array architecture. An 'eye' template was selected as a 16� 16 frag-

ment from the Lena image, yielding a 256-dimensional vector. Fig. 6 (c) depicts

the two-dimensional cross-correlation (inner-products over a sliding window) of

the 8-bit image with the 8-bit template computed with full precision. The same

4
wmn

(i) = 1; xn
(j) = �1 for n = 1; : : : N ; and xn

(j) = �1 for n = N + 1; : : : 2N .



(a) (b)

(c) (d)

Fig. 6. Cross-correlation of fragments of Lena (a) and the eye template (b) computed

by a 32-bit 
oating point processor with 8-bit encoded inputs (c) and by Kerneltron

with 8-bit quantization and 4-bit encoded inputs (d).

computation performed by the Kerneltron, with 4-bit quantization of the image

and template and 8-bit quantization of the output, is given in Fig. 6 (d). Di�er-

ences are relatively small, and both methods return peak inner-product values

(top matches) at both eye locations in the image.5 The template matching op-

eration is representative of a support vector machine that combines nonlinearly

transformed inner-products to identify patterns of interest.

5 The template acts as a spatial �lter on the image, leaking through spectral compo-

nents of the image at the output. The Lena image was mean-subtracted.



4.3 Large-Scale Computation

The design is fully scalable, and can be expanded to any number of input features

and support vectors internally as limited by current fabrication technology, and

externally by tiling chips in parallel.

The dense CID/DRAM multiply-accumulate cell (18� � 45� where � is the

technology scaling parameter) supports the integration of millions of cells on a

single chip in deep submicron technology, for thousands of support vectors in

thousand dimensional input space as the line-width of the fabrication technol-

ogy continues to shrink. In 0.18 �m CMOS technology (with � = 0:1�m), 64

computational arrays with 256� 128 cells each can be tiled on a 8mm � 8mm

silicon area, with two million cells integrated on a single chip.

Distribution of memory and processing elements in a �ne-grain multiply-and-

accumulate architecture, with local bit-parallel storage of the Wmn coe�cients,

avoids the memory bandwidth problem that plagues the performance of CPUs

and DSPs. Because of �ne-grain parallelism, both throughput and power dissi-

pation scale linearly with the number of integrated elements, so every cell con-

tributes one kernel unit operation and one �xed unit of dissipated energy per

computational cycle. Let us assume a conservative cycle time of 10 �s. With

two million cells, this gives a computational throughput of 200 GOPS, which is

adequate for the task described in Section 2.2. The (dynamic) power dissipation

is estimated6 to be less than 50 mW which is signi�cantly lower than that of a

CPU or DSP processor even though computational throughput is many orders

of magnitude higher.

4.4 Applications

The Kerneltron bene�ts real-time applications of object detection and recogni-

tion, particularly in arti�cial vision and human-computer interfaces. Applica-

tions extend from SVMs to any pattern recognition architecture that relies on

computing a kernel distance between an input and a large set of templates in

large dimensions.

Besides throughput, power dissipation is a main concern in portable and

mobile applications. Power e�ciency can be traded for speed, and a reduced

implementation of dimensions similar to the version of the pedestrian classi�er

running on a Pentium PC (27 input features) [4, 5] could be integrated on a chip

running at 100 �W of power, easily supported with a hearing aid type battery

for a lifetime of several weeks.

One low-power application that could bene�t a large group of users is a

navigational aid for visually impaired people. OpenEyes, a system developed for

this purpose [7] currently runs a classi�er in software on a Pentium PC. The

software solution o�ers great 
exibility to the user and developer, but limits

the mobility of the user. The Kerneltron o�ers the prospect of a low-weight,

low-pro�le alternative.

6 The parameters of the estimate are: � = 0:1�m; 3 V power supply; 10 �s cycle time.



5 Conclusions

A massively parallel mixed-signal VLSI processor for kernel-based pattern recog-

nition in very high dimensions has been presented. Besides support vector ma-

chines, the processor is capable of implementing other architectures that make

intensive use of kernels or template matching. An internally analog, externally

digital architecture o�ers the best of both worlds: the density and energetic e�-

ciency of a charge-mode analog VLSI array, and the convenience and versatility

of a digital interface.

An oversampling con�guration relaxes precision requirements in the quan-

tization while maintaining 8-bit e�ective output resolution, adequate for most

vision tasks. Higher resolution, if desired, can be obtained through stochastic

encoding of the digital inputs [20].

A 256� 128 cell prototype was fabricated in 0.5 �m CMOS. The combination

of analog array processing, oversampled input encoding, and delta-sigma analog-

to-digital conversion yields a computational throughput of over 1GMACS per

milliwatt of power. The architecture is easily scalable and capable of delivering

200GOPS at 50mW of power in a 0.18 �m technology| a level of throughput

and e�ciency by far su�cient for real-time SVM detection of complex objects

on a portable platform.

Acknowledgments: This research was supported by ONR N00014-99-1-0612,

ONR/DARPA N00014-00-C-0315 and WatchVision Corporation. The chip was

fabricated through the MOSIS service.

References

1. Boser, B., Guyon, I. and Vapnik, V., \A training algorithm for optimal margin

classi�er," in Proceedings of the Fifth Annual ACM Workshop on Computational

Learning Theory, pp 144-52, 1992.

2. Vapnik, V. The Nature of Statistical Learning Theory, Springer Verlag, 1995.

3. Osuna, E., Freund, R., and Girosi, F., \Training support vector machines: An appli-

cation to face detection," in Computer Vision and Pattern Recognition, pp 130-136,

1997.

4. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E. and Poggio, T. \Pedestrian de-

tection using wavelet templates," in Computer Vision and Pattern Recognition, pp

193-199, 1997.

5. Papageorgiou, C.P, Oren, M. and Poggio, T., \A General Framework for Object

Detection," in Proceedings of International Conference on Computer Vision, 1998.

6. H. Sahbi, D. Geman and N. Boujemaa, \Face Detection Using Coarse-to-Fine Sup-

port Vector Classi�ers," IEEE Int. Conf. Image Processing (ICIP'2002), Rochester

NY, 2002.

7. S. Kang, and S.-W. Lee,\Handheld Computer Vision System for the Visually Im-

paired," Proc. of 3rd International Workshop on Human-Friendly Welfare Robotic

Systems, Daejeon, Korea, pp. 43-48, 2002.

8. Girosi, F., Jones, M. and Poggio, T. \Regularization Theory and Neural Networks

Architectures," Neural Computation, vol. 7, pp 219-269, 1995.



9. Pontil, M. and Verri, A., \Properties of Support Vector Machines," Neural Compu-

tation, vol. 10, pp 977-996, 1998.

10. Burges, C., \A Tutorial on Support Vector Machines for Pattern Recognition," in

U. Fayyad, editor, Proceedings of Data Mining and Knowledge Discovery, pp 1-43,

1998.

11. Cauwenberghs, G. and Poggio, T., \Incremental and Decremental Support Vector

Machine Learning," in Adv. Neural Information Processing Systems, Proc. of 2000

IEEE NIPS Conf., Cambridge MA: MIT Press, 2001.

12. Cauwenberghs, G. and Bayoumi, M., Learning on Silicon, Analog VLSI Adaptive

Systems, Norwell MA: Kluwer Academic, 1999.

13. Sch�olkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T. and Vapnik,

V. \Comparing Support Vector Machines with Gaussian Kernels to Radial Basis

Functions Classi�ers," IEEE Transactions on Signal Processing (to appear 1997).

14. A. Kramer, \Array-based analog computation," IEEE Micro, vol. 16 (5), pp. 40-49,

1996.

15. A. Chiang, \A programmable CCD signal processor," IEEE Journal of Solid-State

Circuits, vol. 25 (6), pp. 1510-1517, 1990.

16. C. Neugebauer and A. Yariv, \A Parallel Analog CCD/CMOS Neural Network

IC," Proc. IEEE Int. Joint Conference on Neural Networks (IJCNN'91), Seattle,

WA, vol. 1, pp 447-451, 1991.

17. V. Pedroni, A. Agranat, C. Neugebauer, A. Yariv, \Pattern matching and parallel

processing with CCD technology," Proc. IEEE Int. Joint Conference on Neural

Networks (IJCNN'92), vol. 3, pp 620-623, 1992.

18. M. Howes, D. Morgan, Eds., Charge-Coupled Devices and Systems, John Wiley &

Sons, 1979.

19. R. Genov, G. Cauwenberghs \Charge-Mode Parallel Architecture for Matrix-

Vector Multiplication," IEEE T. Circuits and Systems II, vol. 48 (10), 2001.

20. R. Genov, G. Cauwenberghs, \Stochastic Mixed-Signal VLSI Architecture for

High-Dimensional Kernel Machines," to appear in Advances in Neural Information

Processing Systems, Cambridge, MA: MIT Press, vol. 14, 2002.

21. G. Mulliken, F. Adil, G. Cauwenberghs, R. Genov, \Delta-Sigma Algorithmic

Analog-to-Digital Conversion," IEEE Int. Symp. on Circuits and Systems (IS-

CAS'02), Scottsdale, AZ, May 26-29, 2002. ISCAS'2002.


