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Abstract. Forward Decoding Kernel Machines (FDKM) combine large-
margin classifiers with Hidden Markov Models (HMM) for Maximum a
Posteriori (MAP) adaptive sequence estimation. State transitions in the
sequence are conditioned on observed data using a kernel-based proba-
bility model, and forward decoding of the state transition probabilities
with the sum-product algorithm directly produces the MAP sequence.
The parameters in the probabilistic model are trained using a recursive
scheme that maximizes a lower bound on the regularized cross-entropy.
The recursion performs an expectation step on the outgoing state of the
transition probability model, using the posterior probabilities produced
by the previous maximization step. Similar to Expectation-Maximization
(EM), the FDKM recursion deals effectively with noisy and partially la-
beled data.

We also introduce a multi-class support vector machine for sparse condi-
tional probability regression, GiniSVM based on a quadratic formulation
of entropy. Experiments with benchmark classification data show that
GiniSVM generalizes better than other multi-class SVM techniques. In
conjunction with FDKM, GiniSVM produces a sparse kernel expansion
of state transition probabilities, with drastically fewer non-zero coeffi-
cients than kernel logistic regression. Preliminary evaluation of FDKM
with GiniSVM on a subset of the TIMIT speech database reveals sig-
nificant improvements in phoneme recognition accuracy over other SVM
and HMM techniques.

1 Introduction

Sequence estimation is at the core of many problems in pattern recognition,
most notably speech and language processing. Recognizing dynamic patterns in
sequential data requires a set of tools very different from classifiers trained to
recognize static patterns in data assumed i.i.d. distributed over time.

The speech recognition community has predominantly relied on Hidden Markov
Models (HMMs) [1] to produce state-of-the-art results. HMMs are generative
models that function by estimating probability densities and therefore require a
large amount of data to estimate parameters reliably. If the aim is discrimination
between classes, then it might be sufficient to model discrimination boundaries
between classes which (in most affine cases) afford fewer parameters.



Recurrent neural networks have been used to extend the dynamic modeling
power of HMMs with the discriminant nature of neural networks [2], but learning
long term dependencies remains a challenging problem [3]. Typically, neural
network training algorithms are prone to local optima, and while they work well
in many situations, the quality and consistency of the converged solution cannot
be warranted.

Large margin classifiers, like support vector machines, have been the subject
of intensive research in the neural network and artificial intelligence communi-
ties [4,5]. They are attractive because they generalize well even with relatively
few data points in the training set, and bounds on the generalization error can be
directly obtained from the training data. Under general conditions, the training
procedure finds a unique solution (decision or regression surface) that provides
an out-of-sample performance superior to many techniques.

Recently, support vector machines have been used for phoneme (or phone)
recognition [7] and have shown very encouraging results. However, use of a stan-
dard SVM classifier implicitly assumes i.i.d. data, unlike the sequential nature
of phones. Figure 1(b) depicts a typical vowel chart as used extensively in speech
and linguistics, showing the location of different vowels with respect to the first
two formants (resonant frequencies of the speech articulators). Due to inertia in
articulation, speech production results in a smooth transition between vowels,
and phones in general [8].

FDKM, introduced in [9], augments the ability of large margin classifiers to
perform sequence decoding and to infer the sequential properties of the data.
It performs a large margin discrimination based on the trajectory of the data
rather than solely on individual data points and hence relaxes the constraint of
i.1.d. data. FDKMSs have shown superior performance for channel equalization
in digital communication where the received symbol sequence is contaminated
by inter symbol interference [9].

This paper applies FDKM to the recognition of phoneme sequences in speech,
and introduces GiniSVM, a sparse kernel machine for regression of conditional
probabilities as needed for training FDKM over large data. Finally, results of
applying FDKM and GiniSVM on standard phoneme benchmark data such as
TIMIT are included.

2 FDKM formulation

The problem of FDKM recognition is formulated in the framework of MAP
(maximum a posteriori) estimation, combining Markovian dynamics with kernel
machines. A Markovian model is assumed with symbols belonging to S classes,
as illustrated in Figure 1(a) for S = 3. Transitions between the classes are
modulated in probability by observation (data) vectors x over time.

2.1 Decoding Formulation

The MAP forward decoder receives the sequence X[n] = {x[n], x[n—1],...,x[1]}
and produces an estimate of the probability of the state variable g[n] over all
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Fig. 1. (a) Three state markov model, where transition probabilities between states are
modulated by the observation vector x. (b) Vowel chart showing the location of typical
English vowels with respect to the first two formant frequencies. Because of inertial re-
striction on the articulators, the transition between phones is smooth and the trajectory
induces a conditional distribution of a phone with respect to others.

classes i, a;[n] = P(g[n] = i | X[n], w), where w denotes the set of parameters for
the learning machine. Unlike hidden Markov models, the states directly encode
the symbols, and the observations x modulate transition probabilities between
states [10]. Estimates of the posterior probability a;[n] are obtained from esti-
mates of local transition probabilities using the forward-decoding procedure [11,
10]

S—1
ai[n] = Z Pijn] ajln —1] (1)

where P;j[n] = P(q[n] = i | g[n — 1] = j,x[n],w) denotes the probability of
making a transition from class j at time n—1 to class i at time n, given the current
observation vector x[n]. The forward decoding (1) embeds sequential dependence
of the data wherein the probability estimate at time instant n depends on all
the previous data. An on-line estimate of the symbol g[n] is thus obtained:

¢**'[n] = arg max a;[n] (2)

The BCJR, forward-backward algorithm [11] produces in principle a better esti-
mate that accounts for future context, but requires a backward pass through the
data, which is impractical in many applications requiring real time decoding.

Accurate estimation of transition probabilities P;;[n] in (1) is crucial in de-
coding (2) to provide good performance. In [9] we used kernel logistic regres-
sion [12], with regularized maximum cross-entropy, to model conditional prob-
abilities. A different probabilistic model that offers a sparser representation is
introduced below.



2.2 Training Formulation

For training the MAP forward decoder, we assume access to a training sequence
with labels (class memberships). For instance, the TIMIT speech database comes
labeled with phonemes. Continuous (soft) labels could be assigned rather than bi-
nary indicator labels, to signify uncertainty in the tralnlng data over the classes.
Like probabilities, label assignments are normalized: Zz 0 y,[n] = 1,y;[n] > 0.
The objective of training is to maximize the cross-entropy of the estimated
probabilities a;[n] given by (1) with respect to the labels y;[n] over all classes i

and training data n
N-15-1

H=3"3 yiln]logailn] 3)
n=0 i=0

To provide capacity control we introduce a regularizer 2(w) in the objective
function [6]. The parameter space w can be partitioned into disjoint parameter
vectors w;; and b;; for each pair of classes i,j = 0,...,5 — 1 such that P;;[n]
depends only on w;; and b;;. (The parameter b;; corresponds to the bias term
in the standard SVM formulation). The regularizer can then be chosen as the
L, norm of each disjoint parameter vector, and the objective function becomes

N—-15-1 SlSl

H=C Z Zy,[n log a;[n ~3 Z Z R (4)

n=0 =0 j=0 =0

where the regularization parameter C' controls complexity versus generalization
as a bias-variance trade-off [6]. The objective function (4) is similar to the primal
formulation of a large margin classifier [5]. Unlike the convex (quadratic) cost
function of SVMs, the formulation (4) does not have a unique solution and direct
optimization could lead to poor local optima. However, a lower bound of the ob-
jective function can be formulated so that maximizing this lower bound reduces
to a set of convex optimization sub-problems with an elegant dual formulation
in terms of support vectors and kernels. Applying the convex property of the
—log(.) function to the convex sum in the forward estimation (1), we obtain
directly

H>Y H ()
where
N-1
H; = Z Cjn Zy,[n log P;j[n Z |wij |2 (6)
n=0

with effective regularization sequence
Cjln] = Cajln —1] . (7)

Disregarding the intricate dependence of (7) on the results of (6) which we
defer to the following section, the formulation (6) is equivalent to regression
of conditional probabilities P;;j[n] from labeled data x[n] and y;[n], for a given
outgoing state j.



2.3 Kernel Logistic Probability Regression

Estimation of conditional probabilities Pr(i|x) from training data x[n] and labels
yi[n] can be obtained using a regularized form of kernel logistic regression [12].
For each outgoing state j, one such probabilistic model can be constructed for
the incoming state 4 conditional on x[n]:

Pij[n] = exp(f;(x[n])) Z exp(foj (x[n])) ®)

As with SVMs, dot products in the expression for f;;(x) in (8) convert into
kernel expansions over the training data x[m] by transforming the data to feature
space [13]

fii(x) = wix+ by

= D AT x[m].x + by 9)
& Z AL K (x[m], x) + b;;

where K(-,-) denotes any symmetric positive-definite kernel' that satisfies the
Mercer condition, such as a Gaussian radial basis function or a polynomial
spline [6,14].

Optimization of the lower-bound in (5) requires solving M disjoint but sim-
ilar sub-optimization problems (6). The subscript j is omitted in the remainder
of this section for clarity. The (primal) objective function of kernel logistic re-
gression expresses regularized cross-entropy (6) of the logistic model (8) in the
form [14,15]

N M
=-2 Slwil+C DI wilmlfi(xm]) —log (e I 4.4 GID] - (10)

The parameters A} in (9) are determined by minimizing a dual formulation of
the objective function (10) obtained through the Legendre transformation, which
for logistic regression takes the form of an entropy-based potential function in
the parameters [12]

H. Z Z Z AQum AT + cz yi[m] — A"/ C) log(yi[m] — A*/C)] (11)
subject to constraints

A =0 (12)

' K(x,y) = &(x).®(y). The map &(-) need not be computed explicitly, as it only
appears in inner-product form.



dar=0 (13)
AP <Oy (14)

Derivations to arrive at the dual formulation are provided in the Appendix.
There are two disadvantages of using the logistic regression dual directly:

1. The solution is non-sparse and all the training points contribute to the final
solution. For tasks involving large data sets like phone recognition this turns
out to be prohibitive due to memory and run-time constraints.

2. Even though the dual optimization problem is convex, it is not quadratic
and precludes the use of standard quadratic programming (QP) techniques.
One has to resort to Newton-Raphson or other nonlinear optimization tech-
niques which complicate convergence and require tuning of additional system
parameters.

In the next section a new multi-class probabilistic regression technique is
introduced which closely approximates the logistic regression solution and yet
produces sparse estimates. Like support vector machines, the resulting optimiza-
tion is quadratic with linear constraints, for which several efficient techniques
exist.

3 GiniSVM formulation

SVM classification produces sparse solutions but probability estimates they gen-
erate are biased. There are techniques that extend SVMs to generate probabil-
ities by cross-validation using held out data [16], but it is hard to extend these
to generation of multi-class probabilities.

GiniSVM produces a sparse solution by optimizing a dual optimization func-
tional using a lower bound of the dual logistic functional. A quadratic (‘Gini’ [17])
index is used to replace entropy. The tightness of the bound provides an elegant
trade-off between approximation and sparsity.

3.1 Huber Loss and Gint Impurity

For binary-class GiniSVM, ‘margin’ is defined as the extent over which data
points are asymptotically normally distributed. Using the notation for asymp-
totic normality in [18], the distribution of distance z from one side of the margin
for data of one class? is modeled by

F(z) = (1 - N (z,0) + €H(2) (15)

where N(.,0) represents a normal distribution with zero mean and standard
deviation o, H(.) is the unknown symmetrical contaminating distribution, and

2 The distributions for the two classes are assumed symmetrical, with margin on op-
posite sides, and distance z in opposite directions.
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Fig. 2. Comparison of logistic regression, GiniSVM and soft-margin SVM classifica-
tion. (a): Loss function in the primal formulation. (b): Potential function in the
dual formulation. The GiniSVM loss function and potential function closely approz-
imate those for logistic regression, while offering the sparsemess of soft-margin SVM
classification.

0 < e < 1. H(.) could, for instance, represent impulsive noise contributing out-
liers to the distribution.

Huber [18] showed that for this general form of F(z) the most robust es-
timator achieving minimum asymptotic variance minimizes the following loss
function:

1z 2| < ko
2) =4 2p" Jills 16
9(2) {k%—%akz i 12| > ko (16)

where in general the parameter k& depends on e. For GiniSVM, the distribution
F(z) for each class is assumed one-sided (z < 0). As with soft-margin SVM,
points that lie beyond the margin (z > 0) are assumed correctly classified, and
do not enter the loss function (g(z) = 0). The loss function asymptotically ap-
proaches the logistic loss function for a choice of parameters satisfying k/o = C.
The correspondence between the Huber and logistic loss functions is illustrated
in Figure 2(a).

In the dual formulation, the Huber loss function (16) transforms to a potential

function of the form \ \
—koZ(1-2 1
GA) =ko C( C) (17)

where C' = k/o. The functional form of the potential (17), for ko = 2, corre-
sponds to the Gini entropy (or impurity function), used extensively in growing
decision trees [17].

The Gini impurity potential (17) for GiniSVM offers a lower bound to the
binary entropy potential for logistic regression. A tight bound is obtained for
ko = 4log2, scaling the Gini potential to match the extrema of the logistic
potential, shown in Figure 2 (b). Since the Gini potential has a finite derivative



at the origin, it allows zero values for the parameters A", and thus supports

sparsity in the kernel representation, as for soft-margin SVM classification.
The principle of lower bounding the entropy potential function with the Gini

impurity index, for a sparse kernel representation, can be directly extended to

the multi-class case.

3.2 Multi-Class GiniSVM

Jensen’s inequality (logp < p—1) formulates a lower bound for the entropy term
in (11) in the form of the multivariate Gini impurity:

M M
1= i <= pilogp; (18)
K3 2

where 0 < p; < 1,Vi and >, p; = 1. Both forms of entropy — va[ p;ilogp; and
1-— qu p? reach their maxima at the same values p; = 1/M corresponding to
a uniform distribution. As in the binary case, the bound can be tightened by
scaling the Gini index with a multiplicative factor v > 1, of which the particular
value depends on M.? The GiniSVM dual cost function H,, is then given by

M 1 N N N
Hy=)I5 ; S NQumAP +7C(3 (wilm] - /O — 1] (19)

The convex quadratic cost function (19) with constraints in (11) can now be
minimized directly using SVM quadratic programming decomposition methods
like SMO [19] or by using incremental SVM techniques [20], details of which are
discussed in [21]. The primary advantage of the technique is that it yields sparse
solutions and yet approximates the logistic regression solution very well.
Figure 3 compares results of training a kernel probability model on three-
class data, with the exact solution using logistic regression, and the approximate
solution obtained by GiniSVM. Deviation between models is observed most
clearly at decision regions far removed from training data. Figure 4 demonstrates
that by minimizing the GiniSVM cost function (using a form of SMO [19, 21])
the true logistic regression cost function tends to decrease with it, although the
effect of the approximation is apparent in the fluctuations at convergence.

4 Recursive FDKM Training

The weights (7) in (6) are recursively estimated using an iterative procedure
reminiscent of (but different from) expectation maximization. The procedure
involves computing new estimates of the sequence a;[n — 1] to train (6) based
on estimates of P;; using previous values of the parameters Aj}. The training

3 Unlike the binary case (M = 2), the factor v for general M cannot be chosen to
match the two maxima at p; = 1/M.
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Fig. 3. Equal (0.5) probability contours obtained from kernel conditional probability

regression on a S-class problem. (a) Ezact logistic regression, and (b) approzimate
GiniSVM solution.

proceeds in a series of epochs, each refining the estimate of the sequence a;[n—1]
by increasing the size of the time window (decoding depth, k) over which it is
obtained by the forward algorithm (1).

The training steps are illustrated in Figure 5 and summarized as follows:

. To bootstrap the iteration for the first training epoch (k = 1), obtain initial
values for a;[n—1] from the labels of the outgoing state, a;[n—1] = y;[n—1].
This corresponds to taking the labels y;[n — 1] as true state probabilities
which corresponds to the standard procedure of using fragmented data to
estimate transition probabilities.

. Train logistic kernel machines, one for each outgoing class j, to estimate
the parameters in P;;[n] i,j = 1,..,.S from the training data x[n]| and labels

yi[n], weighted by the sequence o;[n — 1].

Re-estimate a;[n — 1] using the forward algorithm (1) over increasing decod-

ing depth k, by initializing a;[n — k] to y[n — kJ.

Re-train, increment decoding depth k, and re-estimate a;[n — 1], until the

final decoding depth is reached (k = K).

4.1 Efficient Implementation

The training procedure of Figure 5 entails solving a full optimization problem for
each iteration incrementing the decoding depth k = 1, ... K. This seems poor use
of computational resources given that parameter estimates do not vary consider-
ably. The overall training time can be reduced considerably by bootstrapping the
optimization problem at each iteration k using the previous parameter values.
Updates to the regularization sequence C;[n] = Caj[n—1] at each iteration k
affect the feasible region (14) for the optimization, so that the previous solution
may be infeasible as a starting point for the next iteration. The solution to this
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problem lies in the invariance of the probability model (8) to a common additive
offset A" in the parameters A7'. To bootstrap a feasible solution, the additive
constants A" are chosen to project the previous solution to the current feasible
space as defined by the new regularization sequence Cj[n].

The performance of FDKM training depends on the final decoding depth K,
although observed variations in generalization performance for large values of K
are relatively small. A suitable value can be chosen a priori to match the extent
of temporal dependency in the data. For phoneme classification in speech, for
instance, the decoding depth can be chosen according to the length of a typical
syllable.

5 Experiments and Results

5.1 GiniSVM experiments

To test how well GiniSVM performs as a multi-class classifier, we evaluated
its performance on two standard speech datasets, the Paterson and Barney for-
mant dataset and the Deterding dataset. Results are summarized in Table 1. In
both cases, GiniSVMs yielded better or comparable out-of-sample classification
performance compared to standard “one vs. one,” “one vs. all” and other [22]
multi-class SVM approaches.

5.2 Experiments with TIMIT data

FDKM performance was evaluated on the larger TIMIT dataset consisting of
continuous spoken utterances, preserving sequential structure present between
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Fig. 5. Iterations involved in training FDKM on a trellis based on the Markov model of
Figure 1. During the initial epoch, parameters of the probabilistic model, conditioned on
the observed label for the outgoing state at time n—1, of the state at time n are trained
from observed labels at time n. During subsequent epochs, probability estimates of the
outgoing state at time n — 1 over increasing forward decoding depth k =1,... K deter-
mine weights assigned to data n for training each of the probabilistic models conditioned
on the outgoing state.

Table 1. Vowel Classification Results

I Machine | Dataset [Accuracy]|
SVM (one vs. all) |Paterson-Barney| 79.1%
SVM (one vs. one)|Paterson-Barney| 83.6%

GiniSVM Paterson-Barney| 86.5%
SVM (one vs. all) Deterding 68.2%
SVM (one vs. one)| Deterding 68.4%

GiniSVM Deterding 70.6%

labels (phones). The TIMIT speech dataset [23] consists of approximately 60
phone classes, which were first collapsed onto 39 phone classes according to stan-
dard folding techniques [24]. Training was performed on a subset of ”sx” training
sentences in the TIMIT corpus. The choice of ”sx” sentences was motivated by
their phonetic balance, 1.e. each of the phone classes carries approximately the
same frequency. For training we randomly selected 960 ”sx” sentences spoken by
120 speakers, and for test set we randomly chose 160 ”sx” sentences spoken by
20 speakers. The relative small size of the subset of the database was primarily
governed by current limitations imposed by our SVM training software.

The speech signal was first processed by a pre-emphasis filter with transfer
function 1 — 0.97z71, and then a 25 ms Hamming window was applied over
10 ms shifts to extract a sequence of phonetic segments. Cepstral coefficients
were extracted from the sequence, combined with their first and second order
time differences into a 39-dimensional vector. Cepstral mean subtraction and
speaker normalization were subsequently applied. Right and left context were
added by concatenating previous and next segments to obtain a 117-dimensional
feature vector [25]. The feature vectors were averaged over the duration of the



phone to obtain a single 117 dimensional feature vector for each phone utterance
resulting in approximately 32,000 data points.

Evaluation on the test was performed using MAP forward decoding (2) and
thresholding [26]. The decoded phone sequence was then compared with the
transcribed sequence using Levenshtein’s distance to evaluate different sources
of errors shown in table 2. Multiple runs of identical phones in the decoded and
transcribed sequences were collapsed to single phone instances to reflect true
insertion errors.

Table 2 summarizes the results of the experiments performed with TIMIT.
Note that training was performed over a small subset of the available data,
and the numbers are listed for relative comparison purposes only. To calibrate
the comparison, benchmark results from a standard Gaussian mixture triphone
HMM model are included.

Table 2. TIMIT Ewvaluation

I Machine |Accuracy [Insertion|Substitution|Deletion|Errors]]
HMM (6 mixture triphone) 60.6% 8.4% 30.1% 9.3% [47.8%
SVM (one vs all) 68.4% | 4.9% 22.4% 9.2% (36.5%
SVM (one vs one) 69.1% 4.9% 21.6% 9.3% |35.9%
GiniSVM 70.3% 4.4% 21.6% 8.1% |34.1%

[ FDKM k=1, threshold = 0.25] 71.8% | 4.3% 21.3% 6.9% [32.5%]

[ FDKM k=1, threshold = 0.1 | 71.4% | 5.1% 21.5% 71% [33.7%]|

| | |

| | |
[FDKM k=10, threshold = 0.25] 73.2% | 49% [ 196% | 7.2% [31.7%]
[ FDKM k=10, threshold = 0.1] 72.9% | 54% | 201% [ 7.0% [32.5%]

6 Conclusion

This paper addressed two problems in machine learning, and offered two so-
lutions in conjunction: GiniSVM, and FDKM. GiniSVM was introduced as a
sparse technique to estimate multi-class conditional probabilities with a large-
margin kernel machine. Preliminary evaluations of GiniSVM show that it out-
performs other multi-class SVM techniques for classification tasks. FDKM merges
large-margin classification techniques into an HMM framework for robust for-
ward decoding MAP sequence estimation. FDKM improves decoding and gen-
eralization performance for data with embedded sequential structure, providing
an elegant tradeoff between learning temporal versus spatial dependencies. The
recursive estimation procedure reduces or masks the effect of noisy or missing
labels y;[n]. Other advantages include a feed-forward decoding architecture that
is very amenable to real-time implementation in parallel hardware [27].
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Appendix: Dual Formulation of Kernel Logistic Regression

The regularized log-likelihood/cross entropy for kernel logistic regression is given
by [14,15]

N M
H=), %'W’“P —CY 1Dy fu(x[n]) —log(e/1 ) 4 4 efu <] (20)
k n k

First order conditions with respect to parameters wy, and by, in fi(X) = Wg.x+bg

yield

Denote

o N efr(x[n])
Wi = Xn:[yk[”] - W]X[n]

0—0C N efr(x[n]) o1
- ;[yk [n] - W . ( )
o efe(xn]) -

k = Clyk[n] — W] (22)

in the first-order conditions (21) to arrive at the kernel expansion (9) with linear
constraint

fe(®) =D ARK (x[n],x) + by (23)
0=> Ap. (24)



Note also that »°, AR = 0.

Legendre transformation of the primal objective function (20) in wy, and by
leads to a dual formulation directly in terms of the coefficients A} [12]. Define
Zn = log(zﬁ/f efr(xInD) "and Q;; = K (x;,%;). Then (22) and (23) transform to

> Qu;, —loglys[n] = Mg /C] + b — 2, = 0 (25)
l

which correspond to first-order conditions of the convex dual functional

M | N N N
Hq = 2[5 DD UARQuX + C Y (ykln] — AR/C) log(yk[n] — A7 /C)]  (26)
k n l n
under constraints
> xp= (27)
S o= (28)
k

Ak < Cyi[n] (29)

where by, and z,, serve as Lagrange parameters for the equality constraints (27)
and (28).



