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Abstract—We present an analog VLSI chip intended to serve as  Since the seminal work of Lyon and Mead [7], several re-
a front end of a speech recognition system. The chip architecture search groups have implemented analog subthreshold circuits
is inspired by biological auditory models common to humans and systems that emulate early auditory functions [8], [9],

and primate vertebrates. We include experimental results on a . ) ) L
1.24m CMOS custom analog VLSI implementation and speech [11]-[13]. An important benefit of using analog circuit tech-

recognition results obtained from software simulations of the Niques for speech processing is very low power consumption
hardware on the TI-DIGITS database. and real-time operation.

Index Terms—Analog VLSI, neural networks, speech recogni- We have adOp_ted this approach to deV(?IOp analog VLSI
tion. hardware for auditory-based feature extraction. The extracted
features are the signal energies and zero-crossing time intervals
obtained on the frequency-decomposed output channels in a
cochlear filter bank. The system presented in this paper is

UMAN performance in speech recognition tasks is suntended as a demonstration vehicle toward a low-power real-

perior to that of the state-of-the-art speech recognitidime robust speech recognizer for portable applications. The
systems. This is especially true under adverse conditiopsper is organized as follows. Section Il briefly reviews the
such as noisy environments or when speech is transmittagman auditory periphery and its signal processing function.
through a telephone channel. It is hypothesized that the specBiection Il describes the implemented VLSI architecture and
characteristics of the human auditory periphery may play aeports on preliminary chip testing results. In the final section,
important role in the robustness of human speech perceptiare describe the structure of a speech recognition system that
A significant amount of research has been performed to gainases auditory features, and we report recognition results for a
understanding of basic signal processing steps in a mammaliégit recognition task.
cochlea [1]-[4].

It has also been demonstrated that feature extraction based Il. AUDITORY SIGNAL PROCESSING
on computational models of auditory processing leads to a50und waves that reach the eardrum are mechanically

signal representation that is more robust for speech recognitiphl,sterred to the cochlea, which is a fluid-filled chamber parti-
[5], [6]. However, because of their inherent complexity, applijoned by the basilar membrane (BM), illustrated in Fig. 1. The
cation of auditory models to real systems poses a significaff hanjcal vibrations create standing waves in the cochlear
engineering Challenge_. For most applications, a system dig;mper that cause the BM to vibrate at frequencies corre-
constrained to be real time, low power, and low cost. Howeve, ,ning to the incident acoustic wave frequency. For each
as indicated by J_ankowsk5| [6], it takes 120 times the real t'rﬂ%quency value, there exists a location along the BM where
to compute auditory features on a general purpose WorkSigs " yibration is strongest. These locations roughly follow
tion. Therefore, we should find other methods of Compu“qggarithmic ordering in frequency along the BM. Hence, in

auditory features. generic form, the BM can be modeled as a bank of frequency-
selective filters, shown in Fig. 2, where the center frequency of
Manuscript received October 21, 1997; revised March 13, 1998. This wogach filter is equally spaced on a log scale, each representing

was supported in part by the Center for Language and Speech Processépgbarticmar location equally spaced along the membrane [1],
Johns Hopkins University, by Lockheed Martin, by ONR/DARPA MURI

N00014-95-1-0409, by NSF CAREER MIP-9702346, and by the Nationkl/]- It has been shown that such filter-bank representation is
Science Foundation Neuromorphic Engineering Center at Caltech. This papguivalent to a wavelet analysis [10], [19].

recommended by Guest Editors F. Maloberti and W. C. Siu. , The mechanical vibration along the BM is sensed by the
N. Kumar was with the Center for Language and Speech Processing, The

Johns Hopkins University, Baltimore, MD 21218 USA. He is now with Telog)mner ha_-ir cells (IHC'S) that constitute the.axon roots of
Networks Inc., Germantown, MD 20874 USA (e-mail: nkumar@telogy.comjhe auditory nerve-fiber bundle. Each IHC is connected to

W. Himmelbauer was with the Center for Language and Speech Pighoyt ten nerve fibers that differ in the motion level of

cessing, The Johns Hopkins University, Baltimore, MD 21218 USA. H . . .
is now with Micro Linear Corporation, San Jose, CA 95131 USA (e-mail e BM at which they fire. Beyond the auditory nerve, our

himmelba@engmail.ulinear.com).. understanding of biological processing is almost primitive.
G. Cauwenberghs and A. G. Andreou are with the Center for Languagﬂ)wever' constituting the only signal input to the cortex, the

and Speech Processing, The Johns Hopkins University, Baltimore, MD 21218 firi . I the inf . |
USA (e-mail: gert@bach.ece jhu.edu; andreou@olympus.ece jhu.edu). Nerve-firing patterns must contain all the information relevant

Publisher Item Identifier S 1057-7130(98)03961-5. for recognition. Therefore, an auditory-based feature extraction

I. INTRODUCTION

1057-7130/98%$10.001 1998 IEEE



KUMAR et al. ANALOG VLS| CHIP WITH ASYNCHRONOUS INTERFACE 601

Oval Window  Fluid Basilar Membrane area Ol energy

Offset

<—TZC —

\Y
Round Window >t

Auditory Nerve

. o . . Fig. 3. Information coding by zero-crossing intervals and period energy.
Fig. 1. A schematic diagram of the cochlea showing the main signal
processing components.
G {Mode)
4
’ Encoder HD . o}—{>+

Channel

V?lg?/gfgrm _____ Address
BaseD l (ebtrgion Loge] lLf
=

~Pl~P -  TT

RST
L Tzc& SR
l )I | ) Energy ¢ 1 £
l/\ Z (] ’J_‘ AST SSTLM
= nchronization
8 |, Tzc& %4 N g
l/\ I—)I I/\ ]_) o Energy . y O =
£ N é Energy
. 2| a
: : - 3
H : © Cochl
S| G =
™~ ' *I/\ I > &
i e
| a | | I a 1 Energy FealJres
Apex Fi . . .
I,\ | )I I,\ ) ig. 4. Block diagram of the VLSI architecture for the electronic cochlea.

Fig. 2. BM can be modeled as a bank of filters, each with different centgirerg| over the rectified ac component of the signal, within
frequency. The center frequencies of the filterbanks are uniformly distributed . 1 . . .
on a logarithmic scale. the periodTz-." The zero-crossing interval and the signal
energy for the corresponding interval of the wavelet transform
) . canstitute a complete signal representation [21]. Also, since the
algorithm used for speech recognition must be capable gl racy in computingc depends critically on the accuracy
capturlng_ important specifics of the_fmng patterns, which arg only a few components, it is easier to carefully design
hypothesized to be partly responsible for the robustness phejighle circuit cell for performing this computation [22].
human auditory. _ Therefore, due to its physiological plausibility and power-
The discrete-action potentials generated by the IHC agq signal processing capabilities, we adopt a zero-crossing-
transmitted through nerve fibers to the cochlear nucleus §aseq signal representation for abstracting the auditory nerve
response to an auditory stimulus can be considered as Z88ponse.
crossing events of the BM velocity [15]. This is especially true
at medium sound-pressure levels, such as in a typical office en-
vironment. It has been shown analytically that the encoding of
complex signals, such as natural speech, by the zero-crossinghe implemented hardware system emulating the auditory
rates of its wavelet transform (in this case, performed by tf€riphery includes both a model of frequency decomposition in
BM filter bank) provides a robust representation. In particuldiffe BM of the inner cochlea and a model of feature extraction
the formant phase locking—the property that the hair cell® the inner hair cells of the cochlea.
tend to fire in phase with the dominant frequencies of the Fig. 4 shows a block diagram of the auditory signal pro-
input signal—is believed to introduce spectral enhancemei@tssing chip. Following the architecture proposed by Liu,
and noise robustness [16]-[19]. Moreover, zero-crossing ra#e implement the BM as a filter-bank structure (as shown

detected in spectral subbands are ideal for the fast detectirfig. 2), each segment of which consists of a linear first-
of spectral changes [20]. order low-pass filter, followed by two linear bandpass filter

Fig. 3 defines the term zero-crossing interval or the sections [9] The filter bank is tuned to frequencies spaced
stantaneougero-crossing rate. The depicted waveform is thgniformly on a logarithmic scale, from 100 to 8000 Hz [9],
output of a single BM filter that corresponds to some particul&2], [13]. This range corresponds to the spectrum covered by
location along the BM. We defin@¢ as the time interval speech sounds. The BM is implemented as a 15-segment filter-

between two consecutive upward zero crossings in the Rank structure, each segment of which consists of multiple
component of the signal. In order to account for differedinear first-order sections followed by two linear bandpass filter

fibers fll’lng at different motion levels _Of the Same output, 1The definition of an “energy” feature is short of rigorous physical meaning.
we also compute anergymeasure, which we define as thet should be interpreted as a measure of signal strength or signal “power.”

I1l. VLSI CHIP ARCHITECTURE AND CIRCUITS
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tary mirror structure on the left controls the adaptation speed
BMOutput | comparator | Trigger S/H/Reset+ — REQ and provides robust bias voltages for transisfafs and A4 ~.
—> L Interval Feat.
Circuit Circuit - Interval
Featire B 5/H and Feature Computation

S/ Reset The approach followed for time-interval computation is

Offset similar to that of Kumar [26]. The circuit, shown in Fig. 7,
Energy performs a time-interval-to-voltage conversion at every zero-

Feature | — Energy crossing event. Capacit6fl is charged with a constant current
Circuit Feare (1) and reset at the end of every period. Just prior to resetting

C1, the follower on the very right is powered up and transmits
Fig. 5. Zero-crossing interval and energy feature computation bldgk:( the voltage onC1 to C2
and Energy). :

The S/H and reset procedure described above requires
vad two short, subsequent, nonoverlapping voltage pulses to be

vdd generated by the two-stage circuitry on the left. A stage
% ﬁM+ consists of aNOR gate and an inverter. A falling signal edge
Adapt
o

Offset Voltage from the comparator causes ther output to become high for
T ° a very short time, dependent on héastthe inverter toggles its
state. This slew rate can be controlled externallyVfhiasl.

- The first stage generates the sample pulse, the second stage
vad N resets capacito€1.

This technique of S/H is different from the conventional

Trigger scheme, where the follower is always powered up and a
= (to S/H) charge-compensated switch is used to S/H. The follower in
[‘M

oll

this scheme is active only for the duration of the S/H pulse.
Hence, a proper value foV Biasl, that results in pulse
- durations of nanoseconds range, considerably decreases power
BM Outpute—  —— Bias for Comp. consumption of the follower. Also, due to faster transition
times, the short-circuit current in the digital sections is smaller,
further reducing the power consumption by more than an order
of magnitude. In this respect, the circuit is an improvement
sections [9]. The filters are based on linearized transconductg{&r the circuit described in [26]. To address the problem
developed by Furth [23]. For maximum power efficiency, thef charge injection, the follower is turned off slowly. The
MOS devices are biased in below-threshold operation [24jajye of the capacitot’3 and externally controlled voltage
[27]. The frequency-decomposed time signals from the BM p;,s3 set the rate at which the follower is turned off. The
are then processed locally to obtain a representation for #a@ricated circuit has been tested and found functional for
auditory-nerve firings. We employ a binary charge pump Qgnal frequencies up to 8 MHz.
establish an adaptive elimination of signal offsets. We UseApart from the comparator, the computed offset, &t
the same comparator, that provides the control signal to thgqResefpulses, are also used for obtaining the signal energy
binary charge pump, to detect the upward zero crossing ahd integrating the full-wave rectification of the threshold-
to provides control signals for circuit computiri;- [22]. adjusted BM output signal using a capacitor. We employ
The energy feature is obtained from integrating the full-waug,o transconductors to perform voltage rectification [27]. The
rectified and threshold-adjusted signal on a capacitor. energy feature is sampled and held the same way as the
The outputs of the BM are input to a feature computatiqtpequency feature.
block (I'zc and Energy, as also indicated in Fig. 5. The The circuits just described are contained in the block in-
details of these circuits are described next. dicated by7Tzc and Energyin Fig. 4 and interconnected as
shown in Fig. 5.

Fig. 6. Autoadaptive comparator for detecting zero crossing.

A. Autoadaptive Comparator

The frequency-decomposed time signals from the BM afe Arbitration and Asynchronous Data Interface
processed locally. We employ a binary charge pump [25] The feature outputs from every channel are time-division
to eliminate signal offsets and cancelf noise from the multiplexed to the chip output, using asynchronougrotocol
comparator reference. The comparator, shown in Fig. 6, dehich is most efficient when dealing with communication
tects zero crossing and provides a control signal for circuitproblems involving a bandwidth-limited bus, and when bus
computing the zero-crossing interval. The charge puidp ( requests are at arbitrary time and rate. The idea is similar to
M) controls the offset voltage stored on the capacitor througiiat used by Lazzaret al. [28]. At every zero-crossing instant,
feedback. A change in offset in the BM signal will lead to #he channel requests service by setting a set/reset (SR) latch
change in charge pump duty cycle and effectively charge @¥ig. 4). The arbitration logic handles multiple requests at a
discharge the capacitor to follow the offset. The complemetime and favors the highest frequency channel. It initiates the
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Fig. 7. Sample-and-hold (S/H) circuit and interval feature computation.

address encoder, which passes the winning channel addressgi OCLE L
a D-flip-flop (D-FF) that stores the channel address currentl q:_L-_I_-_ |
being serviced. The address is applied to the multiplexerf @& == == =
which steers the channel feature to the data output pins. On¢ ;1 I&-
the data has been acquired, an external reset pulse is expect; =
It is multiplexed back to reset the SR latch of the channe *—"
just being completed. The arbitration logic and the encode f5 "
generate a new address, which is held by the D-FF and applie "t
to the multiplexer for the next acquisition. We verified this datal**#
acquisition scheme by performing software simulations for &
speech signal. We found that a data acquisition bandwidth ¢
30 K samples per second is sufficient to collect all crossing
events [29].

Apart from these features, the BM output can also b
monitored externally through the multiplexing circuit and is
used for tuning the basilar membrane filterbank model.

T
[

EEEETEETESSST S

IV. CHIP TEST RESULTS

We have fabricated and tested a 15-channel (2 s
mm in 1.2:m BiCMOS technology) prototype chip, shown in : i
Fig. 8. We report here some of the experimental results fromy. 8. Micrograph of the 2 mnx 2 mm feature extraction chip in 1,2m
the chip. Fig. 9 demonstrates the time-interval feature comg#CMOS technology fabricated through the MOSIS service.
tation. The lower trace is the basilar membrane output signal
of the highest frequency channel in response to a triangularThe energy feature is also extracted every period of the
FM-modulated input signal in the audio range. The bandpasignal. If the period is held constant, then the amplitude modu-
properties of the basilar membrane channel are evident frdation of the signal will reflect in this feature. Fig. 10 illustrates
the magnitude envelope of the output. As the input frequentlyis operation. The basilar membrane is supplied with an AM-
decreases, the output amplitude first increases, and then medulated sinusoidal of constant frequency (uppermost trace).
creases, in correspondence to the bandpass properties ofTihe trace below is the corresponding basilar membrane output.
basilar membrane channel. The upper trace shows the resulfiing lower two traces are the energy feature and the time-
time-interval feature voltage. As the frequency decreases, thterval feature, respectively. We observe that signal energy
time interval between the zero crossings increases, and so ddenges, but, due to constant frequency, the time-interval
the output voltage. Also note that, sin€ec is output every feature remains constant.
period, this feature is output less frequently at low frequencies,Fig. 11 depicts the address-bus activity for four periods
as is evident from the larger steps in time. of a sinusoidal input signal. To obtain this trace, the reset
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and does not exceed a time span of at most 40-ms length and
is produced at a rate of 100 Hz. As an alternative, we may also

) _ use pitch-triggered IH generation, that is, zero-crossing events
pulse is externally applied at a clock rate of 50 kHz. Tracgg the lowest frequency channel trigger an IH to be produced.

1-4 correspond to interface address liné® (LSB)-A3 for  \when auditory signal representations are interfaced to
15 cochlea channels. Address zero encodes that noner&fognition systems, the so-calledpresentation-recognizer
the channels have requests to be serviced. Consistently, yu® [11] becomes apparent. There is a significant difference
observe that crossing events tend to be clustered around Z88veen the conventional linear predictive coding (LPC)
phase of the input signal, the zero crossing. or Cepstrum features [14] and the auditory features. The
conventional representations are generally uncorrelated and
of low dimension, as opposed to auditory features that are
The analog VLSI chip outlined in the previous sectiomighly correlated and of higher dimensions. To resolve this
emulates theknown aspects of auditory signal processinggiscrepancy, we use linear discriminant analysis (LDA) that
However, beyond the physiological level of neural firingso reduces feature dimensionality, thus enabling a more
patterns, the mechanisms in higher cortical processing staggisust estimation of fewer parameters [30].
are not well understood. Practical system implementations forFig. 12 depicts the recognition system architecture. The
speech recognition require a compact signal representation #alog VLSI chip serves as the front end. The acquisition
is described by a small number of parameters and contagy&tem collects zero-crossing intervals and the corresponding
only (and all) the information relevant to speech recognitiognergy measure from all channels. Subsequently, a software
We represent the signal properties by constructing an interyabdule computes interval histograms, which are passed
histogram (IH). We generate an IH by creating several bits the recognizer. We apply LDA to reduce the feature
corresponding to different ranges of valuesiGf-. For any dimension and then use hidden Markov models (HMM)
zero-crossing event, we choose the bin that correspondstdoperform digit recognition.
the value of7’z« for that event and fill it with nonlinearly  In our software simulations, we replaced the analog VLSI
compressed energy for the corresponding event. The IHcsip and the acquisition system by an equivalent software

Fig. 10. Energy and interval feature for AM-modulated input.

V. SPEECHRECOGNITION ARCHITECTURE AND RESULTS
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module. We performed digit recognition experiments on thg7]
isolated digits part of the TI-DIGITS database. We modeled
each digit by a seven-state single-mixture left-to-right HMM. g,
We obtained a recognition accuracy of 99.47% on the TI-
DIGITS database, which is obtained when a feature windO\@9
size corresponding to the last 20 crossings is used. The 4
results should be treated as preliminary when compared to
the state-of-the-art systems [31]. We believe that the perfdtd]
mance can be further improved by using better models and
optimizing the IH-generation method. However, the recognizéri]
performance certainly demonstrates the applicability of analog
VLSI cochlea to auditory-based research. Other researchgeg
have used features similar to the one reported here and found
them robust in presence of noise degradation [32], and
expect to see similar robustness from the low-power real-time
VLSI system. [14]

Implementing a complete recognizer on a chip or chips 13
necessitates the implementation of a dimensionality reduction
step (matrix vector multiplications) and a statistical decoder
on a chip. The sophistication required by algorithms in stat 6]
of-the-art speech recognition decoders makes this not a trivial
task and, certainly, a challenge. 07

The question of why the zero-crossing representation ‘is
more robust to noise is an interesting one [4]-[6], [18]. We
have compared the standard fast Fourier transform and thel{f
histogram as applied to an input sine wave corrupted by white
noise [29]. This comparison shows that the nonlinearity ¢f9]
the IH histogram leads to noise suppression around the signal
frequency peak in the spectrum. The nonlinearity originates gy
the correlation of zero-crossing intervals across channels.
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