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Adaptive Digital Correction of Analog Errors
in MASH ADC’s—Part I: Off-Line and Blind

On-Line Calibration
Gert Cauwenberghs, Member, IEEEand Gabor C. Temes, Life Fellow, IEEE

Abstract—Cascaded delta–sigma (MASH) modulators for
higher order oversampled analog-to-digital conversion rely on
precise matching of contributions from different quantizers
to cancel lower order quantization noise from intermediate
delta–sigma stages. This first part of the paper studies the effect
of analog imperfections in the implementation, such as finite gain
of the amplifiers and capacitor ratio mismatch, and presents
algorithms and architectures for digital correction of such analog
imperfections, as well as gain and spectral distortion in the signal
transfer function. Digital correction is implemented by linear
finite-impulse response (FIR) filters, of which the coefficients are
determined through adaptive off-line or on-line calibration. Of
particular interest is an on-line “blind” calibration technique,
that uses no reference and operates directly on the digital output
during conversion, with the only requirement on the unknown
input signal that its spectrum be bandlimited. Behavioral simula-
tions on dual-quantization oversampled converters demonstrate
near-perfect adaptive correction and significant improvements in
signal-to-quantization-noise performance over the uncalibrated
case, using as few as 5 FIR coefficients. An alternative on-line
adaptation technique using test signal injection and experimental
results from silicon are presented in the second part, in a com-
panion paper [1].

Index Terms—Adaptation, analog-to-digital conversion, blind
equalization, delta sigma, digital correction, MASH, mismatch,
sigma delta.

I. INTRODUCTION

M ASH-LIKE cascaded structures of delta–sigma mod-
ulators [2] provide high-order noise shaping through

combining the differentiated digital outputs from the multiple
stages in a way to cancel out the lower order quantization
error contributions from all intermediate stages [3], [4].
However, such structures are very sensitive to the analog
accuracy of implementation, typically limiting the resolution
of analog-to-digital (A/D) conversion to less than 14 bits,
regardless of the order of the noise shaping. Likewise, the
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performance of the Leslie–Singh modulator [5], [6] depends
critically on precise cancellation of error terms originating
from two quantizers of different resolution. The problem of
sensitivity to the precision of analog implementation arises
generally in modulators which contain more than one quantizer
in the signal path.

The analog sensitivity can be reduced, to a limited extent,
through careful design of the modulator architecture [7], [8].
The alternative to high-precision analog design, which we de-
scribe here, is to correct for analog imprecision in the digital do-
main, trading a small increase in the implementation complexity
of the digital part for a significant increase in effective analog
precision. Digital correction of dual-quantization and cascaded
delta–sigma modulators has been investigated, using off-line [9]
and on-line [10]–[13] adaptive methods, and recently demon-
strated in analog hardware [14].

We show that typical analog sources of error in multiple
quantization modulators, such as MASH and Leslie–Singh
structures, can be virtually eliminated through simple linear
digital correction using finite-impulse response (FIR) digital
filters, of which the coefficients are determined through adap-
tive calibration. In this first part of this paper, the approach
taken to adaptive digital correction is in essence a calibra-
tion procedure, either using a well-defined (pseudo-random)
two-level reference signal sequence applied to the analog input
of the modulator, or by appropriately bandlimiting the input
signal so that the signal is zero (and thus, equally well-defined)
over a dedicated “calibration band” outside of the signal band.
Both techniques apply to general multistage structures of cas-
caded delta–sigma modulators, with multibit quantization in
the last stage [2] or an additional multibit quantizer as output
stage [5]. The second part sequel to this paper [1] describes an-
other adaptive method, where test signals are injected at critical
points of the architecture and their contributions auto-zeroed
at the output.

Section II covers sources of analog imprecision, and a corre-
sponding linear model for analog parts of the modulator. Digital
FIR correction of these linear errors is described in Section III,
quantifying the effect of analog imprecision on MASH perfor-
mance, both with and without digital correction. Off-line and
on-line calibration techniques are presented and demonstrated
with behavioral simulation examples in Section IV. Finally, we
conclude in Section VI which also opens the subject of the com-
panion paper [1].

1057–7130/00$10.00 © 2000 IEEE
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Fig. 1. Typical single-ended switched-capacitor realization of (a) an integrator
and (b) corresponding linear analog model.

II. A NALOG MODELING

A. Sources of Analog Imprecision

The input integrator in the analog implementation of a
delta–sigma modulator (performing both “delta” subtraction
and “sigma” accumulation) comprises the most critical part,
since it is directly at the input terminal in the signal path. A
typical single-ended implementation using switched-capacitor
circuits [15] is shown in Fig. 1(a). Ideally, the circuit imple-
ments the function

(1)

with gain controlled by the design geometry of ca-
pacitors and . In practice, (1) is affected by the following
factors.

1) Capacitor mismatch in and , affecting the gain
directly.

2) Finite amplifier gain , affecting both the gain and
a leakage factor in the integration

(2)

with

(3)

3) Amplifier settling time, further affecting both integrator
gain and leakage .

4) Amplifier offset and (thermal and ) noise, which can
be referred to the input in the form of an additive offset.

Fig. 2. Delta–sigma modulator models accounting for analog imperfections:
(a) first-order modulator and (b) second-order modulator.

Correlated double sampling (CDS) or other offset com-
pensation circuit techniques allow to cancel the DC com-
ponent of this term so that it may safely be ignored.

5) Nonlinearity in the components (amplifier, capacitors,
switch injection noise, etc.).

Nonlinearities are detrimental to the signal, and cannot easily
be digitally compensated for. On the other hand, linear errors
can be accounted for in the digital domain using the analog
model of Fig. 1(b), with unknown and possibly variable values

and for the th integrator in the modulator.

B. Linear Error Model of Modulator Structures

Typical structures used as first and second order delta–sigma
modulators are shown in Fig. 2(a) and (b). Besides modeling
capacitive mismatch , the gain parameters may serve
the purpose of improving the stability of noise shaping and in-
creasing the input dynamic range in the standard second-order
modulator [16] with single-bit feedback, for a nominal gain
less than one ( ) [17]. From (2) in the -domain, either
modulator satisfies the linear FIR recurrence relation

(4)

or, equivalently, in terms of the quantization error (residue)

(5)

where, for the first-order modulator ( )

(6)

and for the second-order modulator ( )

(7)
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Fig. 3. Cascaded delta–sigma modulator topologies: MASH modulator with
(a) integrator coupled outputs and (b) residue coupled outputs.

III. M ULTISTAGE (MASH) DELTA-SIGMA MODULATION

A MASH modulator is obtained by cascading individual
delta–sigma modulators from analog inputs to
analog outputs (or residues ), and combining
the digital outputs accordingly. An optional final stage
with multibit quantizer can be used to further boost the
signal-to-quantization-noise ratio (SQNR).

A. Analog Modulator

Two possible scenarios of interest are depicted in Fig. 3. In the
first, the integrator output (prior to quantization) is fed directly
to the input of the next stage: for
. From (4) and Fig. 3(a)

(8)

In the second scenario, shown in Fig. 3(b), only the quantization
residue is fed to the next stage. The
advantage of this scheme is an improvement of up to 6 dB in dy-
namic range (a factor of two in the residue, assuming 1-bit quan-
tization), at the expense of a slight complication in the analog
design (to construct the residue). Also, the residue subtraction
scheme minimizes distortion of the signal due to nonlinearities
in subsequent stages [18]. Results of digital linear correction
are identical for both schemes (through a trivial transformation),
and we proceed with the one in Fig. 3(a).

B. Digital Correction

An ideal cascaded delta–sigma modulator cancels the quan-
tization noise from intermediate delta–sigma stages through
matched FIR filtering of the quantized outputs [2], [3], [5]. By
the same token, acorrecteddigital output can be obtained,

for a modulator with analog imperfections, by combining the
quantized outputs through digital (FIR) filters

(9)

which, according to (8), translates into a combination of signal
and quantization noise

STF NTF

NTF (10)

with signal transfer function

STF (11)

and noise transfer functions

NTF

NTF

NTF (12)

An appropriate choice for the coefficients of the FIR filters
is one that cancels all noise transfer functions, except the very
last. Ideal digital correction

(13)

equalizes the signal transfer function and produces noise
shaping of cumulative order

STF NTF

(14)

where and denote the nominal gains and pole errors of the
integrators in the cascade. In other words, the noise-shaping
(SQNR) performance of the digitally corrected cascade struc-
ture is equivalent to that of a (hypothetically stable) single-stage
design of the same order, same number of bits in the quantizer

, and with identical gain of the amplifiers. The perfor-
mance loss due to the persistence of the pole errors in NTF
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Fig. 4. Simulated peak signal-to-noise performance of the oversampled
converter for different oversampling ratios, with digital correction of analog
implementation errors. Gain errors (ja � aj) are nominally 5%, and pole
errors (1 � p ) are nominally 1%.

is, for all practical purposes, negligible for reasonable values of
amplifier gain [2].

IV. A DAPTIVE CALIBRATION

A. Off-Line Reference-Based Calibration

The key to the practical application of digital correction is a
method to determine the values of the coefficients in thefil-
ters from physical observations, with no prior knowledge about
the and . One possibility is to state this task as a re-
gression problem, and derive values for the coefficients from
a least-squares error criterion on the digital output sequence
under application of a well-defined analog input sequence [9]. In
essence, the technique corresponds to a calibration of the signal
transfer function of the oversampled converter, in combination
with a maximum reduction of the in-band quantization noise.

Choosing a random-sign constant-amplitude analog input se-
quence to perform the calibration is most practical, since
it avoids analog implementation errors while still covering most
of the spectrum. Targeting (14), a least-squares error criterion on
the input and output sequences is to minimize

(15)

where is the calibration sample size, and the linear time-in-
variant operator represents the decimation low-pass filter.
To be effective, the low-pass filter needs to cut off near the
signal Nyquist frequency, and needs to roll off faster than the
noise spectrum rises (e.g., dB/oct). From (9), the min-
imization of (15) becomes a standard linear regression proce-
dure, with the FIR coefficients of as parameters,

as the dependent variable, and the plus their de-
layed values as independent variables. The solution is therefore
unique, and can be obtained in practice with any standard linear
regression method (recursive least squares, conjugate gradient,
etc.).

As a numerical example, we consider the case in
Fig. 3(b), with two cascaded second-order delta–sigma modu-

(a)

(b)

Fig. 5. Effect of nonlinear amplifier gain on noise and distortion performance
of the oversampled converter, with digital correction of linear analog
imperfections errors. (a) SNDR for different input levels, with 64 times
oversampling. (b) Output amplitude spectrum for a�2 dB full-scale sinusoidal
input. Gain errors (ja � aj) are nominally 0.5%, linear pole errors (1� p )
are 0.1%, and nonlinear pole errors are nominally�5% relative to the linear
error.

lators ( ), the first one with 1-bit quantizer, and the
second with a 6-bit quantized output.

Fig. 4 shows simulation results of the effect of digital cor-
rection, using the above calibration with , on the
SNR performance of the oversampled converter. Also shown are
the results of optimal digital correction according to (13), which
are indistinguishable from those obtained for an ideal converter
without analog imperfections. Fig. 4 demonstrates that the cal-
ibration method is effective for the compensation of analog im-
perfections for all practical SNR levels of interest (up to 130 dB,
corresponding to 21 ENOB’s).

Since the presented digital correction scheme is linear, any
quantization noise and harmonic distortion due to nonlineari-
ties in the analog implementation cannot be eliminated from the
output. An important source of nonlinearities are signal-depen-
dent gain variations in the integrator amplifiers (nonlinear).
The simulations in Fig. 5 indicate that the effect of reasonably
small nonlinearities on performance is not drastic. The net effect
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is saturation of the signal-to-noise-and-distortion ratio (SNDR)
near full-range amplitudes, shown in Fig. 5(a). Harmonic dis-
tortion is visible in the spectrum of the (optimally corrected)
calibrated output in Fig. 5(b).

B. Pseudo On-Line Interleaved Reference-Based Calibration

The main disadvantage of the above calibration procedure
is that it is off-line, interrupting the normal operation of the
data converter by presenting the calibration pseudo-random se-
quence at the input. A direct on-line extension is obtained in
a configuration containing at least two converters, where each
one in turn is removed from the conversion process for off-line
calibration, while the other(s) remain(s) active. Such arrange-
ment allows calibration to proceed in the background, for con-
tinuous tracking of slow variations in the analog imperfections
of the modulators. With two converters in one module, the cost
in overhead to provide on-line operation is 100%. However, for
a linear array of converters operating in parallel, the relative
overhead of one extra converter reduces to, asymptotically
approaching zero for large . In such arrangement, the con-
verters could be calibrated in circular periodic fashion, each one
covered once every calibration cycles. This arrangement is
attractive for use in high-speed multiplexed [19], multirate [20],
[21], and interleaved [22] arrays of parallel converters. Since
offset and gain errors of the individual converters are virtually
eliminated along with the lower order quantization noise of their
modulators, effects of cyclic pattern noise and nonlinear distor-
tion in a multiplexed arrangement are significantly reduced.

C. On-Line Reference-Based Calibration

An intrinsically on-line alternative, allowing the ref-
erence signal to co-exist with the input signal without
multiplexing, is to additively combine the input with a
broadband (pseudo-random) reference signal, and employ
spread-spectrum techniques (matched filtering) to adaptively
equalize the output to according to (14).

A particular on-line scheme is “test injection” [1], [12], [14],
which additively injects reference signals onto the
nodes in between stages in Fig. 3, and adaptively cancels the
corresponding NTFterms in (10) ( ) by auto-ze-
roing the contribution to through matched filtering of
with . This technique is described in detail and experimen-
tally demonstrated in Part II of the paper.

D. Blind On-Line Calibration

A reference-free alternative is a “blind”’ calibration tech-
nique that operates with nothing but the unknown input signal,
and applies generally to pipelined algorithmic A/D converters,
multistage oversampled A/D converters, and their combina-
tions [13]. The technique assumes a strictly bandlimited input
signal, sampled at a frequency greater than the Nyquist rate

, where is the signal bandwidth. Thestopband
is then reserved for calibration purposes, as

illustrated schematically in Fig. 6. As with off-line calibration
using a reference signal, the technique corrects for linear errors
in the analog implementation by minimizing the quantization

Fig. 6. Signal stopband for blind calibration.

error variance in the stopband through least-squares linear
parameter estimation.

A fringe benefit of the oversampling is a significant frequency
margin for calibration over the entire noise band ,
where is the oversampling ratio. The only complication arises
from the frequency dependency of the quantization error in (14)
through the noise shaping. The key is to match the noise-shaping
of the quantization noise as faithfully as possible in the least-
squares formulation of the parameter estimates.

A high-pass filter spanning the band removes
the input signal . In principle, an ideal high-pass filter is
needed to completely eliminate the unknown signal for precise
calibration. In practice, a filter with finite roll-off in the signal
band is adequate as long as the signal leakage is below the quan-
tization noise floor in the calibration band, which is fairly easy
to accommodate with conventional filter structures. The quanti-
zation noise is modeled as white noise with uniform power
spectrum over the calibration band. Thus, from (14) and (9), the
coefficients of the FIR filters are estimated by minimizing
the variance of over the calibration band

NTF

(16)

where with . The digital emphasis filter

NTF (17)

serves to equalize the noise-shaping of the spectrum ofin
the estimation, besides removing the signal band of. The
error made in the approximation of the unknown noise-shaping
in (17) does not affect the accuracy of the results to first order.

The least-squares formulation 16 is rank deficient, and one of
the coefficients needs to be fixed in the optimization for a unique
solution to exist. This is not surprising, since the nature ofblind
calibration leaves the signal gain undefined, in the absence of
an absolute reference.

It is relatively straightforward to extend the blind calibration
procedure to include adaptive calibration of linear errors in the
quantizer , such as for an algorithmic (pipelined) A/D con-
verter [13]. Using a linear model of the corrected output as a
function of the A/D converted bits, the unknown coefficients
are estimated jointly with the coefficients in the optimization
(16). The same strategy could also be used to extend the on-line
adaptive calibration to digital correction of analog implemen-
tation errors in a D/A converter providing multibit feedback in
a integration loop, using a similar linear model of the cor-
rected output in terms of the D/A converted bits. This is impor-
tant, since multibit feedback significantly enhances the stability
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Fig. 7. Output amplitude spectrum in response to a sinusoidal input. Top:
single-bit second-order�� modulator outputV from the first stage. Center:
combined dual-quantization outputV from �� modulator and 16-stage
radix 1.85 algorithmic A/D converter, with nominal, uncalibrated coefficients.
Bottom: calibrated outputV .

of modulation, and digital correction allows to recover the
drastic loss in precision due to analog imperfections in the DAC
[23].

As an example, assume that is implemented as an algo-
rithmic pipelined ADC, with a radix less than two to warrant
full digital correction capability in the presence of significant
mismatch in the analog implementation [24]. “Ideal” correction
of can be expressed as a linear combination of the bits ob-
tained from the ADC [13]

(18)

with bit coefficients , determined by prod-
ucts of the ADC interstage gains, which can generally be dif-
ferent from . The linear expansion of with unknown
coefficients can be directly included in the least-squares formu-
lation for in (16), yielding

(19)

The solution consists of minimizing (19) (in the time or fre-
quency domain), while fixing one of the coefficients to elim-
inate one degree of freedom as before. The least-squares esti-
mation is nonlinear in the parameters, since the coefficients in

and appear together in a product. A simple iterative
means to the nonlinear optimization is to alternatingly solve for
the ( ) and coefficients while fixing
(plus one other coefficient), and subsequently solving for
and fixing the coefficients (plus one other). From
nominal initial settings for , this procedure converges in
between 5–20 iteration cycles, depending on calibration band-
width (oversampling ratio), in our numerical experiments.

In the behavioral simulations, we consider a Leslie–Singh
structure, in Fig. 3(a). A second-order delta–sigma
modulator , of the topology in Fig. 2(b), and an algo-

Fig. 8. SQNR as a function of oversampling ratio for the dual-quantization
modulator, with ideal coefficients and calibrated coefficients obtained at
maximum calibration bandwidth supported by the oversampling ratio.

rithmic A/D converter with stages and radix ,
are used. The analog parameter ranges correspond to typical
switched-capacitor implementations: and

.
The simulation results demonstrate significant improvements

in SQNR achieved over the uncalibrated case, in which default
values for the A/D coefficients and filters are assigned ac-
cording to nominal values of the analog circuit parameters. As
is evident from the modulation spectrum in response to a har-
monic input in Fig. 7, the improvements result from a combina-
tion of eliminating dominant first-order quantization noise from
the first stage, and linearizing the pipelined A/D multibit quan-
tizer. By forcing a flat spectrum for in (16), harmonic distor-
tion present in the output, due to strong correlations between

and , is largely eliminated.
The dependence of SQNR on the oversampling ratio is shown

in Fig. 8. The blind calibration technique achieves near-per-
fect correction at higher oversampling ratios where the off-line
method saturates. The increasing success of the blind method
at higher oversampling ratios reflects the larger portion of the
spectrum covered by the calibration band.

The astronomical figures of SQNR are shown only to
illustrate the correction power of the calibration procedure,
which clearly goes beyond practical limits that are physically
attainable with noise levels present in typical analog circuits.
To verify the robustness of the above calibration techniques
under more general conditions, we have conducted simulations
including additive noise in each of the stages (both integrators
and quantizers), showing no significant degradations in SNR
performance obtained from noisy calibration compared to that
of the ideal coefficients under identical noisy conditions.

V. DISCUSSION

A. Blind versus Reference-Based Calibration

The robust performance of the blind on-line calibration tech-
nique under fairly general conditions may seem to suggest that
there is no need for another scheme. There are two important
issues that factor in the comparison with reference-based cali-
bration schemes.
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1) The formulation of blind calibration restricts the input to
be bandlimited. This could, in principle, be satisfied by
means of an anti-alias front-end filter, although such a
filter is not strictly needed for an oversampling data con-
verter and may aversely affect the overall SNDR perfor-
mance. Without the low-pass front-end, some signal may
leak through in the calibration band. The effect of this
leakage is minimal, as long as it remains below the quan-
tization noise floor, which is elevated in the calibration
band as a result of noise shaping.

2) The absence of an absolute signal reference in blind cal-
ibration leaves the signal gain undefined. This becomes
an issue in certain applications where absolute accuracy
is crucial. It is particularly important for time-inter-
leaved or parallel data converters, where random gain
variations introduce cyclic or fixed pattern noise. The
pseudo on-linereference-based calibration technique in
Section IV-B would be best suited in this case.

Similar concerns apply toon-line reference-based schemes
in Section IV-C as to the blind scheme: the implicit assumption
is that the input signal and quantization noise of intermediate
stages do not correlate with the reference, and the signal gain of
the corrected output may be in error because the reference gain
is generally different from the signal gain at the summing node
where both signals are (capacitively) combined.

The analog hardware requirements for all reference-based
methods are similar, including a precise (pseudo-random or
other two-level) reference, and additive (i.e., capacitive) access
to the reference injection node(s). This overhead in hardware
is very modest, and the main issue in the implementation
(by construction) is the complexity of digital correction and
adaptive calibration.

B. Hardware Complexity

The digital correction and adaptation algorithms could
readily be implemented in real time on a host or supporting
digital processor, incurring no extra hardware, but a significant
processor load. Some simplifications below make it practical
to integrate these functions along with the analog circuitry at a
minimal cost in complexity of implementation.

The digital correction by itself requires a bank of FIR filters
, as shown in the digital part of Fig. 3. The number of taps

depends on the number of stages and the order of each submod-
ulator, as given by (13), but is relatively small (ten and six total
coefficients in the above off-line and blind on-line calibration
case studies, respectively, including one coefficient in the blind
on-line case that can be set to unity). The coarse (1-bit or K-bit)
quantization in the outputs also reduces the size (number
of bits) of the FIR multipliers.

Adaptive calibration of the FIR coefficients , where
, is conveniently implemented using

the delta rule or its variants. This applies to both blind and
reference-based methods. For instance, gradient descent of the
off-line metric (15) leads to the update rule

(20)

of which a simplified implementation, with identical steady
state solution (over an infinite horizon), is constructed by
rearranging contributions over time

(21)

thus avoiding the need to decimate each of the quantized outputs
individually, but the decimated error instead. (This comes at

the expense of a need for extra delays into get around the
noncausality of the conjugated decimation filter, i.e., time-re-
versed impulse response.) Multiplication reduces to a single-bit
exclusive-or (XOR) by adopting a pilot-rule version of (21)

sign

sign (22)

implemented using one up/down counter per coefficientfor
. Adaptive schemes are available to dynamically adjust

the “learning rate” constant for improved rate of convergence
[25].

The same simplifying transformations can be applied to im-
plement on-line reference-based and blind adaptive calibration
schemes, with all filtering in the gradient-based LMS formula-
tion referred to the output (residue), and pilot versions imple-
mented in the form of counters. A particular architecture for
LMS-based digital adaptation is included in Part II of the paper.

VI. CONCLUSION

We have presented a simple calibration technique for adaptive
digital correction of multiple quantization delta–sigma modula-
tors. The calibration effectively removes quantization noise that
leaks through at the output due to analog imperfections in the
implementation, by means of adjusting the coefficients of the
differentiation filters to the realized analog transfer functions of
the modulation stages. Our approach also allows the correction
of spectral distortion and gain mismatch in the signal path due
to a nonideal signal transfer function in the modulators, and ex-
tends to adaptive correction of static nonlinearity in Nyquist-rate
converters.

Under the mild assumption of a bandlimited input signal, we
have demonstrated that on-line digital calibration is possible
using no more information than direct observations of the digital
outputs being calibrated, with no need to apply a signal refer-
ence or interrupting the data conversion process. The procedure
is widely applicable to multistage designs, and was verified with
behavioral simulations on a Leslie–Singh dual-stage multibit
oversampled A/D converter with a pipelined algorithmic A/D
quantizer, with SQNR improvements beyond physical accuracy
limits in analog circuit implementations.

An alternative on-line calibration technique, based on injec-
tion of known random signals at select points in the analog archi-
tecture, is presented in the companion paper [1]. Further prac-
tical considerations, as well as experimental results from silicon,
are also included there.
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