
Analog Integrated Circuits and Signal Processing, 13, 195–209 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Analog VLSI Stochastic Perturbative Learning Architectures∗

GERT CAUWENBERGHS
gert@bach.ece.jhu.edu

Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218

Received May 20, 1996; Accepted October 17, 1996

Abstract. We present analog VLSI neuromorphic architectures for a general class of learning tasks, which include
supervised learning, reinforcement learning, and temporal difference learning. The presented architectures are
parallel, cellular, sparse in global interconnects, distributed in representation, and robust to noise and mismatches in
the implementation. They use a parallel stochastic perturbation technique to estimate the effect of weight changes on
network outputs, rather than calculating derivatives based on a model of the network. This “model-free” technique
avoids errors due to mismatches in the physical implementation of the network, and more generally allows to
train networks of which the exact characteristics and structure are not known. With additional mechanisms of
reinforcement learning, networks of fairly general structure are trained effectively from an arbitrarily supplied
reward signal. No prior assumptions are required on the structure of the network nor on the specifics of the desired
network response.

Key Words: Neural networks, neuromorphic engineering, reinforcement learning, stochastic approximation

1. Introduction

Carver Mead introduced “neuromorphic engineering”
[1] as an interdisciplinary approach to the design of bi-
ologically inspired neural information processing sys-
tems, whereby neurophysiological models of percep-
tion and information processing in living organisms are
mapped onto analog VLSI systems that not only emu-
late their functions but also resemble their structure [2].

Essential to neuromorphic systems are mechanisms
of adaptation and learning, modeled after neural “plas-
ticity” in neurobiology [3], [4]. Learning can be
broadly defined as a special case of adaptation whereby
past experience is used effectively in readjusting the
network response to previously unseen, although sim-
ilar, stimuli. Based on the nature and availability of a
training feedback signal, learning algorithms for artifi-
cial neural networks fall under three broad categories:
unsupervised, supervised and reward/punishment (re-
inforcement). Physiological experiments have re-
vealed plasticity mechanisms in biology that correpond
to Hebbian unsupervised learning [5], and classical

∗This work was supported by ARPA/ONR under MURI grant
N00014-95-1-0409. Chip fabrication was provided through MOSIS.

(pavlovian) conditioning [6], [7] characteristic of re-
inforcement learning.

Mechanisms of adaptation and learning also provide
a means to compensate for analog imperfections in
the physical implementation of neuromorphic systems,
and fluctuations in the environment in which they op-
erate. Examples of early implementations of analog
VLSI neural systems with integrated adaptation and
learning functions can be found in [8]. While off-
chip learning can be effective as long as training is
performed with the chip “in the loop”, chip I/O band-
width limitations make this approach impractical for
networks with large number of weight parameters. Fur-
thermore, on-chip learning provides autonomous, self-
contained systems able to adapt continuously in the
environment in which they operate.

On-chip learning in analog VLSI has proven to be a
challenging task for several reasons. The least of prob-
lems is the need for local analog storage of the learned
parameters, for which adequate solutions exist in vari-
ous VLSI technologies [34]–[39]. More significantly,
learning algorithms that are efficiently implemented on
general-purpose digital computers do not necessarily
map efficiently onto analog VLSI hardware. Second,
even if the learning algorithm supports a parallel and

196 G. Cauwenberghs

scalable architecture suitable for analog VLSI imple-
mentation, inaccuracies in the implementation of the
learning functions may significantly affect the perfor-
mance of the trained system. Third, the learning can
only effectively compensate for inaccuracies in the net-
work implementation when their physical sources are
contained directly inside the learning feedback loop.
Algorithms which assume a particular model for the
underlying characteristics of the system being trained
are expected to perform poorer than algorithms which
directly probe the response of the system to external
and internal stimuli. Finally, the nature of typical learn-
ing algorithms make assumptions on prior knowledge
which place heavy constraints on practical use in hard-
ware. This is particularly the case for physical systems
of which the characteristics nor the optimization ob-
jectives are properly defined.

This paper addresses these challenges by using
stochastic perturbative algorithms for model-free esti-
mation of gradient information [9], in a general frame-
work that includes reinforcement learning under de-
layed and discontinuous rewards [10]–[14]. In particu-
lar, we extend earlier work on stochastic error-descent
architectures for supervised learning [15] to include
computational primitives implementing reinforcement
learning. The resulting analog VLSI architecture re-
tains desirable properties of a modular and cellular
structure, model-free distributed representation, and
robustness to noise and mismatches in the implemen-
tation. In addition, the architecture is applicable to
the most general of learning tasks, where an unknown
“black-box” dynamical system is adapted using a exter-
nal “black-box” reinforcement-based delayed and pos-
sibly discrete reward signal. As a proof of principle, we
apply the model-free training-free adaptive techniques
to blind optimization of a second-order noise-shaping
modulator for oversampled data conversion, controlled
by a neural classifier. The only evaluative feedback
used in training the classifier is a discrete failure signal
which indicates when some of the integrators in the
modulation loop saturate.

Section 2 reviews supervised learning and stochastic
perturbative techniques, and presents a corresponding
architecture for analog VLSI implementation. The fol-
lowing section covers a generalized form of reinforce-
ment learning, and introduces a stochastic perturbative
analog VLSI architecture for reinforcement learning.
Neuromorphic implementations in analog VLSI and
their equivalents in biology are the subject of section 4.
Finally, section 5 concludes the findings.

2. Supervised Learning

In a metaphorical sense, supervised learning assumes
the luxury of a committed “teacher”, who constantly
evaluates and corrects the network by continuously
feeding it target values for all network outputs. Super-
vised learning can be reformulated as an optimization
task, where the network parameters (weights) are ad-
justed to minimize the distance between the targets and
actual network outputs. Generalization and overtrain-
ing are important issues in supervised learning, and are
beyond the scope of this paper.

Let y(t) be the vector of network outputs with com-
ponentsyi (t), and correspondinglyytarget(t) be the sup-
plied target output vector. The network contains ad-
justable parameters (or weights)p with componentspk,
and state variablesx(t) with componentsxi (t) (which
may contain external inputs). Then the task is to min-
imize the scalar error index

E(p; t) =
∑

i

|ytarget
i (t)− yi (t)|ν . (1)

in the parameterspi , using a distance metric with norm
ν > 0.

2.1. Gradient Descent

Gradient descent is the most common optimization
technique for supervised learning in neural networks,
which includes the widely used technique of back-
propagation (or “dynamic feedback”) [16] for gradient
derivation, applicable to general feedforward multilay-
ered networks.

In general terms, gradient descent minimizes the
scalar performance indexE by specifying incremen-
tal updates in the parameter vectorp according to the
error gradient∇pE :

p(t + 1) = p(t)− η ∇pE(t). (2)

One significant problem with gradient descent and its
variants for on-line supervised learning is the com-
plexity of calculating the error gradient components
∂E/∂pk from a model of the system. This is especially
so for complex systems involving internal dynamics in
the state variablesxj (t):

∂E
∂pk
=
∑
i, j

∂E(t)
∂yi
· ∂yi (t)

∂xj
· ∂xj (t)

∂pk
(3)

Analog VLSI 197

where derivation of the dependencies∂xj /∂pk over
time constitutes a significant amount of computation
that typically scales super-linearly with the dimension
of the network [15]. Furthermore, the derivation of
the gradient in (3) assumes accurate knowledge of the
model of the network (y(t) as a function ofx(t), and re-
currence relations in the state variablesx(t)). Accurate
model knowledge cannot be assumed for analog VLSI
neural hardware, due to mismatches in the physical
implementation which can not be predicted at the time
of fabrication. Finally, often a model for the system
being optimized may not be readily available, or may
be too complicated for practical (real-time) evaluation.
In such cases, a black-box approach to optimization is
more effective in every regard. This motivates the use
of the well-known technique of stochastic approxima-
tion [17] for blind optimization in analog VLSI sys-
tems. We apply this technique to supervised learning
as well as to more advanced models of “reinforcement”
learning under discrete delayed rewards. The connec-
tion between stochastic approximation techniques and
principles of neuromorphic engineering will be illus-
trated further below, in contrast with gradient descent.

2.2. Stochastic Approximation Techniques

Stochastic approximation algorithms [17] have long
been known as effective tools for constrained and un-
constrained optimization under noisy observations of
system variables [18]. Applied to on-line minimization
of an error indexE(p), the algorithms avoid the compu-
tational burden of gradient estimation by directly ob-
serving the dependence of the indexE on randomly ap-
plied perturbations in the parameter values. Variants on
the Kiefer-Wolfowitz algorithm for stochastic approx-
imation [17], essentially similar to random-direction
finite-difference gradient descent, have been formu-
lated for blind adaptive control [19], neural networks
[9],[20] and the implementation of learning functions
in VLSI hardware [21], [22], [15], [23].

The broader class of neural network learning algo-
rithms under this category exhibit the desirable prop-
erty that the functional form of the parameter updates is
“model-free”, i.e., independent of the model specifics
of the network or system under optimization. The
model-free techniques for on-line supervised learning
are directly applicable to almost any observable sys-
tem with deterministic, slowly varying, and possibly
unknown characteristics. Parallel implementation of

the stochastic approximation algorithms results into
efficient and modular learning architectures that map
well onto VLSI hardware. Since those algorithms use
only direct function evaluations and no derivative infor-
mation, they are functionally simple, and their imple-
mentation is independent of the structure of the system
under optimization. They exhibit robust convergence
properties in the presence of noise in the system and
model mismatches in the implementation.

A brief description of the stochastic error-descent
algorithm follows below, as introduced in [15] for ef-
ficient supervised learning in analog VLSI. The in-
tegrated analog VLSI continous-time learning system
used in [24], [25] forms the basis for the architectures
outlined in the sections that follow.

2.3. Stochastic Supervised Learning

Let E(p) be the error functional to be minimized, with
E a scalar deterministic function in the parameter (or
weight) vectorp with componentspi . The stochastic
algorithm specifies incremental updates in the param-
eterspi as with gradient descent (2), although using a
stochastic approximation to the true gradient

∂E(t)
∂pi

est

= πi (t) · Ê(t) (4)

where the differentially perturbed error

Ê(t) = 1

2σ 2
(E(p(t)+ π(t))− E(p(t)− π(t))) (5)

is obtained from two direct observations ofE un-
der complementary activation of a parallel random
perturbation vectorπ(t) with componentsπi (t) onto
the parameter vectorp(t). The perturbation compo-
nentsπi (t) are fixed in amplitude and random in sign,
πi (t) = ±σ with equal probabilities for both polarities.
The algorithm essentially performs gradient descent in
random directions in the parameter space, as defined
by the position of the perturbation vector.

As with exact gradient descent, iteration of the up-
dates using (4) converges in the close proximity of a
(local) minimum ofE , provided the perturbation am-
plitudeσ is sufficiently small. The rate of convergence
is necessarily slower than gradient descent, since every
observation (5) only reveals scalar information about
the gradient vector in one dimension. However, the

198 G. Cauwenberghs

amount of computation required to compute the gradi-
ent at every update may outweigh the higher conver-
gence rate offered by gradient descent, depending on
the model complexity of the system under optimiza-
tion. When applied to on-line supervised learning in
recurrent dynamical systems, the stochastic algorithm
provides a net computational efficiency rivaling that
of exact gradient descent. Computational efficiency
is defined in terms of the total number of operations
required to converge,i.e., reach a certain level ofE .
A formal derivation of the convergence properties is
presented in [15].

2.4. Supervised Learning Architecture

While alternative optimization techniques based on
higher-order extensions on gradient descent will cer-
tainly offer superior convergence rates, the above
stochastic method achieves its relative efficiency at a
much reduced complexity of implementation. The only
global operations required are the evaluations of the er-
ror function in (5), which are obtained from direct ob-
servations on the system under complementary activa-
tion of the perturbation vector. The operations needed
to generate and apply the random perturbations, and to
perform the parameter update increments, are strictly
local and identical for each of the parameter compo-
nents. The functional diagram of the local parameter
processing cell, embedded in the system under opti-
mization, is shown in Figure 1. The complementary
perturbations and the corresponding error observations
are performed in two separate phases on the same sys-
tem, rather than concurrently on separate replications
of the system. The sequential activation of the comple-
mentary perturbations and corresponding evaluations
of E are synchronized and coordinated with a three-
phase clock:

φ0 : E(p, t)
φ+ : E(p+ π, t) (6)

φ− : E(p− π, t).

This is represented schematically in Figure 1 by a mod-
ulation signalφ(t), taking values{−1, 0, 1}. The extra
phaseφ0 (φ(t) = 0) is not strictly needed to com-
pute (5)—it is useful otherwise,e.g. to compute finite
difference estimates of second order derivatives for dy-
namic optimization of the learning rateη(t).

The local operations are further simplified owing to
the binary nature of the perturbations, reducing the
multiplication in (4) to an exclusive-or logical oper-
ation, and the modulation byφ(t) to binary multiplex-
ing. Besides efficiency of implementation, this has a
beneficial effect on the overall accuracy of the imple-
mented learning system, as will be explained in the
context of VLSI circuit implementation below.

2.5. Supervised Learning in Dynamical Systems

In the above, it was assumed that the error functional
E(p) is directly observable on the system by applying
the parameter valuespi . In the context of on-line su-
pervised learning in dynamical systems, the error func-
tional takes the form of the average distance of norm
ν between the output and target signals over a moving
time window,

E(p; ti , t f) =
∫ t f

ti

∑
i

|ytarget
i (t ′)− yi (t

′)|νdt ′, (7)

which implicitly depends on the training sequence
ytarget(t) and on initial conditions on the internal state
variables of the system. An on-line implementation
prohibits simultaneous observation of the error mea-
sure (7) under different instances of the parameter vec-
tor p, as would be required to evaluate (5) for con-
struction of the parameter updates. However, when the
training signals are periodic and the intervalT = t f −ti
spans an integer multiple of periods, the measure (7)
under constant parameter values is approximately in-
variant to time. In that case, the two error observations
needed in (5) can be performed in sequence, under com-
plementary piecewise constant activation of the pertur-
bation vector.

Stochastic error-descent with the dynamic error in-
dex in (7) has been used in [24], [25] to implement the
supervised learning functions in an integrated network
of six fully interconnected continuous-time neurons
with 42 parameters. The analog VLSI chip, dissipating
1.2 mW from a 5 Vsupply, learned to generate given
periodic signals at two of the outputs, representing a
quadrature-phase oscillator, in less than 1500 training
cycles of 60 msec each.

In the context of on-line supervised learning in dy-
namical systems, the requirement of periodicity on the
training signals is a major limitation of the stochastic
error-descent algorithm. Next, this requirement will be

Analog VLSI 199

Fig. 1. Architecture implementing stochastic error-descent supervised learning. The learning cell is locally embedded in the network. The
differential error index is evaluated globally, and communicated to all cells.

relaxed, along with some more stringent assumptions
on the nature of supervised learning. In particular, a
target training signal will no longer be necessary. In-
stead, learning is based on an external reward signal that
conveys only partial and delayed information about the
performance of the network.

3. Learning From Delayed and Discrete Rewards

Supervised learning methods rely on a continuous
training signal that gives constant feedback about the
direction in which to adapt the weights of the network
to improve its performance. This continuous signal
is available in the form of target valuesytarget(t) for
the network outputsy(t). More widely applicable but
also more challenging are learning tasks where target
outputs or other continuous teacher feedback are not
available, but instead only a non-steady, delayed re-
ward (or punishment) signal is available to evaluate
thequality of the outputs (or actions) produced by the
network. The difficulty lies in assigning proper credit
for the reward (or punishment) to actions that where
produced by the network in the past, and adapting the
network accordingly in such a way toreinforcethe net-
work actions leading to reward (and conversely, avoid
those leading to punishment).

3.1. Reinforcement Learning Algorithms

Several iterative approaches to dynamic programming
have been applied to solve the credit assignment prob-
lem for training a neural network with delayed rewards
[10]–[14]. They all invoke an “adaptive critic element”

which is trained along with the network to predict the
future reward signal from the present state of the net-
work. We define “reinforcement learning” essentially
as given in [11], which includes as special cases “time
difference learning” or TD(λ) [12], and, to some ex-
tent, Q-learning [13] and “advanced heuristic dynamic
programming” [14]. The equations are listed below in
general form to clarify the similarity with the above su-
pervised perturbative learning techniques. It will then
be shown how the above architectures are extended to
allow learning from delayed and/or impulsive rewards.

Let r (t) be the discrete delayed reward signal for
state vectorx(t) of the system (componentsxj (t)). r (t)
is zero when no signal is available, and is negative for
a punishment. Lety(t) be the (scalar) output of the
network in response to an input (or state)x(t), andq(t)
the predicted future reward (or “value function”) asso-
ciated with statex(t) as produced by the adaptive critic
element. The action taken by the system is determined
by the polarity of the network output, sign(y(t)). For
example, in the pole balancing experiment of [11],y(t)
is hard-limited and controls the direction of the fixed-
amplitude force exterted on the moving cart. Finally,
letw andv (componentswi andvi) be the weights of the
network and the adaptive critic element, respectively.
Then the weight updates are given by

1wi (t) = wi (t + 1)− wi (t) (8)

= α r̂ (t) · ei (t)

1vi (t) = vi (t + 1)− vi (t) (9)

= β r̂ (t) · di (t)

where the “eligibility” functionsei (t) anddi (t) are up-

200 G. Cauwenberghs

dated as

ei (t + 1) = δei (t)+ (1− δ) sign(y(t))
∂y(t)

∂wi
(10)

di (t + 1) = λdi (t)+ (1− λ)∂q(t)

∂vi

and the reinforcement̂r (t) is given by

r̂ (t) = r (t)+ γq(t)− q(t − 1). (11)

The parametersδ andλdefine the time span of credit as-
signed byei (t) anddi (t) to actions in the past, weight-
ing recent actions stronger than past actions:

e(t) = (1− δ)
t−1∑

t ′=−∞
δt−t ′−1 sign(y(t ′))

∂y(t ′)
∂wi

(12)

d(t) = (1− λ)
t−1∑

t ′=−∞
λt−t ′−1∂q(t ′)

∂vi
.

Similarly, the parameterγ defines the time span for the
prediction of future reward byq(t), at convergence:

q(t) ≈
∞∑

t ′=t+1

γ t ′−t−1r (t ′). (13)

For γ = 1 andy ≡ q, the equations reduce to TD(λ).
Convergence of TD(λ) with probability one has been
proven in the general case of linear networks of the
form q =∑ vi xi [26].

Learning algorithms of this type are neuromorphic in
the sense that they emulate classical (pavlovian) con-
ditioning in pattern association as found in biologi-
cal systems [6] and their mathematical and cognitive
models [27], [7]. Furthermore, as shown below, the
algorithms lend themselves to analog VLSI implemen-
tation in a parallel distributed architecture which, un-
like more complicated gradient-based schemes, resem-
bles the general structure and connectivity of biological
neural systems.

3.2. Reinforcement Learning Architecture

While reinforcement learning does not perform gradi-
ent descent of a (known) error functional, the eligibility
functionsei (t) anddi (t) used in the weight updates are
constructed from derivatives of output functions to the
weights. The eligibility functions in equation (10) can
be explicitly restated as (low-pass filtered) gradients of

an error function

E(t) = |y(t)| + q(t) (14)

with

ei (t + 1) = δ ei (t) + (1− δ) ∂E(t)
∂wi

(15)

di (t + 1) = λ di (t) + (1− λ) ∂E(t)
∂vi

.

Rather than calculating the gradients in (15) from the
network model, we can again apply stochastic pertu-
bative techniques to estimate the gradients from direct
evaluations on the network. Doing so, all properties
of robustness, scalability and modularity that apply to
stochastic error descent supervised learning apply here
as well. As in (4), stochastic approximation estimates
of the gradient components in (15) are

∂E(t)
∂wi

est

= ωi (t) Ê(t) (16)

∂E(t)
∂vi

est

= υi (t) Ê(t)

where the differential perturbed error

Ê(t) = 1

2σ 2
(E(w+ ω, v+ υ, t)

− E(w− ω, v− υ, t)) (17)

is obtained from two-sided parallel random perturba-
tion w±ω simultaneous withv±υ (|ωi | = |υi | = σ).

A side benefit of the low-pass filtering of the gradi-
ent in (15) is an improvement of the stochastic gradient
estimate (16) through averaging. As with stochastic er-
ror descent supervised learning, averaging reduces the
variance of the gradient estimate and produces learning
increments that are less stochastic in nature, although
this is not essential for convergence of the learning pro-
cess [15].

Figure 2 shows the block diagram of a reinforcement
learning cell and an adaptive critic cell, with stochas-
tic perturbative estimation of the gradient according
to (16). LPδ and LPλ denote first-order low-pass fil-
ters (15) with time constants determined byδ andλ.
Other than the low-pass filtering and the global multi-
plicative factorr̂ (t), the architecture is identical to that
of stochastic error descent learning in Figure 1. As
before, the estimation of̂E(t) does not require sepa-
rate instances of perturbed and non-perturbed networks
shown in Figure 2, and can be computed sequentially

Analog VLSI 201

Fig. 2. General architecture implementing reinforcement learning
using stochastic gradient approximation.(a) Reinforcement learn-
ing cell. (b) Adaptive critic cell.

by evaluating the output of the network and adaptive
critic in three phases for every cycle oft :

φ0 : E(w, v, t)
φ+ : E(w+ ω, v+ υ, t) (18)

φ− : E(w− ω, v− υ, t).
In systems with a continuous-time output response, we
assume that the time lag between consecutive obser-
vations of the three phases ofE is not an issue, which
amounts to choosing an appropriate sampling rate for
t in relation to the bandwidth of the system.

Similarities between the above cellular architectures
for supervised learning and reinforcement learning are
apparent: both correlate local perturbation valuesπi ,

ωi or υi with a global scalar index̂E that encodes the
differential effect of the perturbations on the output,
and both incrementally update the weightspi , wi or
vi accordingly. The main difference in reinforcement
learning is the additional gating of the correlate prod-
uct with a global reinforcement signalr̂ after temporal
filtering. For many applications, the extra overhead
that this implies in hardware resources is more than
compensated by the utility of the reward-based credit
assignment mechanism, which does not require an ex-
ternal teacher. An example is given below in the case
of oversampled A/D conversion.

3.3. Simulation Results

We evaluated both exact gradient and stochastive per-
turbative embodiments of the reinforcement learning
algorithms on an adaptive neural classifier, controlling
a higher-order noise-shaping modulator used for over-
sampled A/D data conversion [30]. The order-n mod-
ulator comprises a cascade ofn integratorsxi (t) oper-
ating on the difference between the analog inputu(t)
and the binary modulated outputy(t):

x0(t + 1) = x0(t)+ a (u(t)− y(t)) (19)

xi (t + 1) = xi (t)+ a xi−1(t), i = 1, . . .n− 1

wherea = 0.5. The control objective is to choose the
binary sequencey(t) such as to keep the excursion of
the integration variables within bounds,|xi (t)| < xsat

[29].
For the adaptive classifier, we specify a one-hidden-

layer neural network, with inputsxi (t) and outputy(t).
The network hasm hidden units, a tanh(.) sigmoidal
nonlinearity in the hidden layer, and a linear output
layer. For the simulations we setn = 2 andm= 5. The
casen = 2 is equivalent to the single pole-balancing
problem [11].

The only evaluative feedback signal used during
learning is a failure signal which indicates when one or
more integration variables saturate,|xi (t)| ≥ xsat. In
particular, the signalr (t) counts the number of integra-
tors in saturation:

r (t) = −b
∑

i

H(|xi (t)| − xsat) (20)

whereb = 10, and whereH(.) denotes a step function
(H(x) = 1 if x > 0 and 0 otherwise). The adaptive
critic q(t) is implemented with a neural network of

202 G. Cauwenberghs

Fig. 3. Simulated performance of stochastic perturbative (◦) and
gradient-based (×) reinforcement learning in a second-order noise-
shaping modulator. Time between failures for consecutive trials from
zero initial conditions.

identical structure as fory(t). The learning parameters
in (8), (10) and (11) areδ = 0.8, λ = 0.7, γ = 0.9,
α = 0.05 andβ = 0.001. These values are consistent
with [11], adapted to accommodate for differences in
the time scale of the dynamics (19). The perturbation
strength in the stochastic version isσ = 0.01.

Figure 3 shows the learning performance for sev-
eral trials of both versions of reinforcement learning,
using exact and stochastic gradient estimates. During
learning, the input sequenceu(t) is random, uniform in
the range−0.5 . . .0.5. Initially, and every time failure
occurs (r (t) < 0), the integration variablesxi (t) and
eligibilitiesek(t)anddk(t)are reset to zero. Qualitative
differences observed between the exact and stochastic
versions in Figure 3 are minor. Further, in all but one of
the 20 cases tried, learning has completed (i.e., conse-
quent failure is not observed in finite time) in fewer than
20 consecutive trial-and-error iterations. Notice that a
non-zeror (t) is only generated at failure,i.e., less than
20 times, and no other external evaluative feedback is
needed for learning.

Figure 4 quantifies the effect of stochastic perturba-
tive estimation of the gradients (15) on the quality of re-
inforcement learning. The correlation indexc(t)mea-
sures the degree of conformity in the eligibilities (both
ei (t) anddi (t)) between stochastic and exact versions
of reinforcement learning. Correlation is expressed as
usual on a scale from−1 to 1, with c(t) = 1 indi-
cating perfect coincidence. Whilec(t) is considerably

Fig. 4. Effect of stochastic perturbative gradient estimation on the
reinforcement learning.c(t) quantifies the degree of conformity in
the eligibilitiesei (t) anddi (t) between exact and stochastic versions.

less than 1 in all cases,c(t) > 0 about 95 % of the
time, meaning thaton averagethe sign of the param-
eter updates (8) for exact and stochastic versions are
consistent in at least 95 % of the cases. The scatterplot
c(t) vs.r̂ (t) also illustrates how the adaptive critic pro-
duces a positive reinforcementr̂ (t) in most of the cases,
even though the “reward” signalr (t) is never positive
by construction. Positive reinforcementr̂ (t) under idle
conditions ofr (t) is desirable for stability. Notice that
the failure-driven punishment points (wherer (t) < 0)
are off-scale of the graph and strongly negative.

We tried reinforcement learning on higher-order
modulators,n = 3 and higher. Both exact and stochas-
tic versions were successful forn = 3 in the majority
of cases, but failed to converge forn = 4 with the
same parameter settings. On itself, this is not surprising
since higher-order delta-sigma modulators tend to be-
come increasingly prone to unstabilities and sensitive
to small changes in parameters with increasing order
n, which is why they are almost never used in practice
[30]. It is possible that more advanced reinforcement
learning techniques such as “Advanced Heuristic Dy-
namic Programming” (AHDP) [14] would succeed to
converge for ordersn > 3. AHDP offers improved
learning efficiency using a more advanced, gradient-
based adaptive critic element for prediction of reward,
although it is not clear at present how to map the algo-
rithm efficiently onto analog VLSI.

The above stochastic perturbative architectures for
both supervised and reinforcement learning support
common “neuromorphs” and corresponding analog

Analog VLSI 203

VLSI implementations. Neuromorphs of learning in
analog VLSI are the subject of next section.

4. Neuromorphic Analog VLSI Learning

Neuromorphic engineering [1] combines inspira-
tion from neurobiology to pursue human-engineered
human-like VLSI information processing systems at
all levels of the design: device physics and technology,
circuit topologies, and the overall architecture organiz-
ing the flow of information. We address these levels in
the context of learning as defined above.

4.1. Subthreshold MOS Technology

MOS transistors operating in the subthreshold region
[31] are attractive for use in medium-speed, medium-
accuracy analog VLSI processing, because of the low
current levels and the exponential current-voltage char-
acteristics that span a wide dynamic range of cur-
rents [32] (roughly from 100 fA to 100 nA for a
square device in 2µm CMOS technology). Futher-
more, subthreshold MOS transistors provide a clear
“neuromorph” [1], since their exponential I-V charac-
teristics closely resemble the carrier transport though
cell membranes in biological neural systems, as gov-
erned by the same Boltzman statistics [33]. The expo-
nential characteristics provide a variety of subthreshold
MOS circuit topologies that serve as useful computa-
tional primitives (such as nonlinear conductances, sig-
moid nonlinearities, etc.) for compact analog VLSI
implementation of neural systems [2]. Of particular
interest are translinear subthreshold MOS circuits, de-
rived from similar bipolar circuits [32]. They are based
on the exponential nature of current-voltage relation-
ships, and offer attractive compact implementations of
product and division operations in VLSI.

4.2. Adaptation and Memory

Learning in analog VLSI systems is inherently cou-
pled with the problem of storage of analog information,
since after learning it is most often desirable to retain
the learned weights for an extended period of time.
The same is true for biological neural systems, and
mechanisms of plasticity for short-term and long-term
synaptic storage are not quite understood. In VLSI,
analog weights are conveniently stored as charge or

Fig. 5. Adaptation and memory in analog VLSI: storage cell with
charge buffer.

voltage on a capacitor. A capacitive memory is gener-
ically depicted in Figure 5. The stored weight charge
is preserved when brought in contact with the gate of
an MOS transistor, which serves as a buffer between
weight storage and the implementation of the synaptic
function. An adaptive element in contact with the ca-
pacitor updates the stored weight in the form of discrete
charge increments

Vstored(t + 1) = Vstored(t)+ 1

C
1Qadapt(t) (21)

or, equivalently, a continuous current supplying a
derivative

d

dt
Vstored(t) = 1

C
Iadapt(t) (22)

where1Qadapt(t) =
∫ t+1

t Iadapt(t ′)dt′.
On itself, a floating gate capacitor is a near-perfect

memory. However, leakage and spontaneous decay of
the weights result when the capacitor is in volatile con-
tact with the adaptive element, such as through drain
or source terminals of MOS transistors. Non-volatile
memories contain adaptive elements that interface with
the floating gate capacitor by capacitive coupling across
an insulating oxide. Charge transport through the ox-
ide is controlled by tunneling and hot electron injection
[34] or UV-activated conduction [35], [36]. Volatile
memories are adequate for short-term storage, or re-

204 G. Cauwenberghs

Fig. 6. Charge-pump adaptive element implementing a volatile
synapse.

quire an active refresh mechanism for long-term stor-
age [37], [38].

4.3. Adaptive Circuits

Charge-Pump Adaptive ElementFigure 6 shows the
circuit diagram of a charge-pump adaptive element im-
plementing a volatile synapse. The circuit is a simpli-
fied version of the charge pump used in [38] and [25].
When enabled by ENn and ENp (at GND andVdd poten-
tials, respectively), the circuit generates an incremental
update (21) or (22) of which the polarity is determined
by POL. The amplitude of the current supplying the
incremental update is determined by gate voltagesVbn

andVbp, biased deep in subthreshold to allow fine (sub-
fC) increments if needed. The increment amplitude is
also determined by the duration of the enabled current,
controlled by the timing of ENn and ENp. When both
ENn and ENp are set midway between GND andVdd,
the current output is disabled. Notice that the switch-
off transient is (virtually) free of clock feedthrough
charge injection, because the current-supplying tran-
sistors are switched from their source terminals, with
the gate terminals being kept at constant voltage [38].

Stochastic Perturbative Learning CellThe circuit
schematic of a learning cell implementing stochastic er-
ror descent is given in Figure 7, adapted from [24], [25]
in simplified form. The incremental update−ηπi Ê to
be performed in (5) is first decomposed in amplitude
and sign components. This allows for a hybrid digital-
analog implementation of the learning cell, in which
amplitudes of certain operands are processed in analog

format, and their polarities implemented in logic. Since
|πi | ≡ 1, the amplitudeη|Ê | is conventiently commu-
nicated as a global signal to all cells, in the form of two
gate voltagesVbn andVbp. The (inverted) polarityPOL
is obtained as the (inverted) exclusive-or combination
of the perturbationπi and the polarity ofÊ . The de-
composition of sign and amplitude ensures proper con-
vergence of the learning increments in the presence of
mismatches and offsets in the physical implementation
of the learning cell. This is a consequence of the fact
that the polarities of the increments are implemented
accurately by logic-controlled circuitry, regardless of
analog mismatches in the implementation.

The perturbationπi is applied topi in three phases
(5) by capacitive coupling onto the storage nodeC.
The binary state of the local perturbationπi selects
one of two global perturbation signals to couple onto
C. The perturbation signals (V+σ and its complement
V−σ) globally control the three phasesφ0,φ+ andφ− of
(5), and set the perturbation amplitudeσ . The simple
configuration using a one-bit multiplexer is possible
because each perturbation component can only take
one of two values±σ .

Analog Storage Because of the volatile nature of the
adaptive element used, an active refresh mechanism
may be required if long-term local storage of the weight
values after learning is desired [37]. A robust and effi-
cient mechanism is “partial incremental refresh” [38],
which can be directly implemented using the adaptive
element in Figure 7 by drivingPOL with a binary func-
tion of the weight value [39]. As in [39], the binary
quantization function can be multiplexed over an array
of storage cells, and can be implemented by retaining
the LSB from A/D/A conversion [40] of the value to
be stored.

A non-volatile equivalent of the adaptive element in
Figure 6 is described in [34]. A non-volatile learning
cell performing stochastic error descent can be obtained
by substituting [34] as the core adaptive element in
Figure 7. Likewise, more intricate volatile and non-
volatile circuits implementing stochastic reinforcement
learning can be derived from extensions on Figure 7 and
[34].

Measurements The model-free nature of the stochas-
tic perturbative learning algorithms does not impose
any particular conditions on the implementation of
computational functions required for learning. By far

Analog VLSI 205

Fig. 7. Circuit schematic of a learning cell implementing stochastic error descent, using the charge pump adaptive element.

the most critical element in limiting learning perfor-
mance is the quality of the parameter update increments
and decrements, in particular the correctness of their
polarity. Relative fluctuations in amplitude of the learn-
ing updates do not affect the learning process to first
order, since their effect is equivalent to relative fluctu-
ations in the learning rate. On the other hand, errors
in the polarity of the learning updates might adversely
affect learning performance even at small update am-
plitudes. Therefore, we investigate practical limits as
imposed by the binary controlled charge-pump adap-
tive element in Figures 6, which controls the polarity
and amplitude of the updates for learning as well as
dynamic refresh.

Measurements on a charge pump withC = 0.5 pF
fabricated in a 2µm CMOS process are shown in Fig-
ure 8. Under pulsed activation of ENn and ENp, the re-
sulting voltage increments and decrements are recorded
as a function of the gate bias voltagesVbn andVbp, for
both polarities of POL, and for three different values
of the pulse width1t (23µsec, 1 msec and 40 msec).
In all tests, the pulse period extends 2 msec beyond the
pulse width. The exponential subthreshold character-
istics are evident from Figure 8, with increments and
decrements spanning four orders of magnitude in am-
plitude. The lower limit is mainly determined by junc-

tion diode leakage currents, as shown in Figure 8 (a)
for1t = 0 (0.01 mV per 2 msec interval at room tem-
perature). This is more than adequate to accommodate
learning over a typical range of learning rates. Also, the
binary control POL of the polarity of the update is effec-
tive for increments and decrements down to 0.05 mV
in amplitude, corresponding to charge transfers of only
a few hundred electrons.

4.4. Architecture

The general structure of neuromorphic information
processing systems has some properties differentiating
them from some more conventional human-engineered
computing machinery, which are typically optimized
for general-purpose sequential digital programming.
Some of the desirable properties for neuromorphic ar-
chitectures are: fault-tolerance and robustness to noise
through a redundant distributed representation, robust-
ness to changes in operating conditions through on-line
adaptation, real-time bandwidth through massive par-
allelism, and modularity as a result of locality in space
and time. We illustrate these properties in the two ar-
chitectures for supervised and reinforcement learning
in Figures 1 and 2. Since both architectures are similar,
a distinction between them will not explicitly be made.

206 G. Cauwenberghs

Fig. 8. Measured characteristics of charge-pump adaptive element in 2µm CMOS withC = 0.5 pF. (a) n-type decrements (POL= 0);
(b) p-type increments (POL= 1).

Analog VLSI 207

Fault-Tolerance Through Statistical Averaging in a
Distributed RepresentationDirect implementation of
gradient descent, based on an explicit model of the net-
work, is prone to errors due to unaccounted discrep-
ancies in the network model and mismatches in the
physical implementation of the gradient. This is due to
the localized representation in the computation of the
gradient as calculated from the model, in which any
discrepancy in one part may drastically affect the final
result. For this and other reasons, it is unlikely that biol-
ogy performs gradient calculation on complex systems
such as recurrent neural networks with continuous-time
dynamics. Stochastic error descent avoids errors of var-
ious kinds by physically probing the gradient onto the
system rather than deriving it. Using simultaneous and
uncorrelated parallel perturbations of the weights, the
effect of a single error on the outcome is thus signifi-
cantly reduced, by virtue of the statistical nature of the
computation. However, critical in the accuracy of the
implemented learning system is the precise derivation
and faithful distribution of the global learning signals
Ê(t) and r̂ (t). Stictly speaking, it is essential only to
guarantee the correctpolarity and not the exact ampli-
tude of the global learning signals, as implemented in
Figure 7.

Robustness to Changes in the Environment Through
On-Line Adaptation This property is inherent to the
on-line incremental nature of the studied supervised
and reinforcement learning algorithms, which track
structural changes in̂E(t) or r̂ (t) on a characteristic
time scale determined by learning rate constants such
as η or α andβ. Learning rates can be reduced as
convergence is approached, as in the popular notion in
cognitive neuroscience that neural plasticity decreases
with age and experience.

Real-Time Bandwidth Through ParallelismAll learn-
ing operations are performed in parallel, with exception
of the three-phase perturbation scheme (5) or (17) to ob-
tain the differential index̂E under sequential activation
of complementary perturbationsπ and−π. We note
that the synchronous three-phase scheme is not essen-
tial and could be replaced by an asynchronous pertur-
bation scheme as in [9] and [41]. While this probably
resembles biology more closely, the synchronous gra-
dient estimate (4) using complementary perturbations
is computationally more efficient as it cancels error
terms up to second order in the perturbation strengthσ

[17]. In the asynchronous scheme, one could envision
the role of random noise naturally present in biolog-
ical systems as a source of perturbations, although it
is not clear how noise sources can be effectively iso-
lated to produce the correlation measures necessary for
gradient estimation.

Modular Architecture with Local ConnectivityThe
learning operations are local in the sense that a need
for excessive global interconnects between distant cells
is avoided. The global signals are few in number and
common for all cells, which implies that no signal inter-
connects are requiredbetweencells across the learning
architecture, but all global signals are communicated
uniformly acrosscells instead. This allows to embed
the learning cells directly into the network (or adap-
tive critic) architecture, where they interface physically
with the synapses they adapt, as in biological systems.
The common global signals include the differential in-
dex Ê(t) and reinforcement signalr̂ (t), besides com-
mon bias levels and timing signals.̂E(t) andr̂ (t) are
obtained by any global mechanism that quantifies the
“fitness” of the network response in terms of teacher
target values or discrete rewards (punishments). Phys-
iological experiments support evidence of local (heb-
bian [5]) and sparsely globally interconnected (rein-
forcement [6]) mechanisms of learning and adaptation
in biological neural systems [3], [4].

5. Conclusion

Neuromorphic analog VLSI architectures for a general
class of learning tasks have been presented, along with
key components in their analog VLSI circuit imple-
mentation. The architectures make use of distributed
stochastic techniques for robust estimation of gradient
information, accurately probing the effect of parame-
ter changes on the performance of the network. Two
architectures have been presented: one implementing
stochastic error-descent for supervised learning, and
the other implementing a novel stochastic variant on a
generalized form of reinforcement learning. The two
architectures are similar in structure, and both are suit-
able for scalable and robust analog VLSI implementa-
tion.

While both learning architectures can operate on
(and be integrated in) arbitrary systems of which the
characteristics and structure does not need to be known,
the reinforcement learning architecture additionally

208 G. Cauwenberghs

supports a more general form of learning, using an
arbitrary, externally supplied, reward or punishment
signal. This allows the development of more powerful,
generally applicable devices for “black-box” sensor-
motor control which make no prior assumptions on the
structure of the network and the specifics of the desired
network response.

We presented simulation results that demonstrate the
effectiveness of perturbative stochastic gradient esti-
mation for reinforcement learning, applied to adap-
tive oversampled data conversion. The neural clas-
sifier controlling the second-order noise-shaping mod-
ulator was trained for optimal performance with no
more evaluative feedback than a discrete failure signal
indicating whenever any of the modulation integrators
saturate. The critical part in the VLSI implementa-
tion of adaptive systems of this type is the precision
of the polarity, rather than the amplitude, of the im-
plemented weight parameter updates. Measurements
on a binary controlled charge-pump in 2µm CMOS
have demonstrated voltage increments and decrements
of precise polarity spanning four orders of magnitude
in amplitude, with charge transfers down to a few hun-
dred electrons.

References

1. C. A. Mead, “Neuromorphic electronic systems.”Proceedings
of the IEEE78(10), pp. 1629–1639, 1990.

2. C. A. Mead, Analog VLSI and Neural Systems. Addison-
Wesley: Reading, MA, 1989.

3. G. M. Shepherd,The Synaptic Organization of the Brain. 3rd
ed. Oxford Univ. Press: New York, NY, 1992.

4. P. S. Churchland and T. J. Sejnowski,The Computational
Brain. MIT Press: Cambridge, MA, 1990.

5. S. R. Kelso and T. H. Brown, “Differential conditioning of as-
sociative synaptic enhancement in Hippocampal brain slices.”
Science232, pp. 85–87, 1986.

6. R. D. Hawkins, T. W. Abrams, T. J. Carew, and E. R. Kandell,
“A cellular mechanism of classical conditioning inAplysia:
activity-dependent amplification of presynaptic facilitation.”
Science219, pp. 400–405, 1983.

7. P. R. Montague, P. Dayan, C. Person and T. J. Sejnowski, “Bee
foraging in uncertain environments using predictive Hebbian
learning.”Nature377(6551), pp. 725–728, 1996.

8. C. A. Mead and M. Ismail, Eds.,Analog VLSI Implementation
of Neural Systems. Kluwer: Norwell, MA, 1989.

9. A. Dembo and T. Kailath, “Model-free distributed learning.”
IEEE Transactions on Neural Networks1(1), pp. 58–70, 1990.

10. S. Grossberg, “A neural model of attention, reinforcement, and
discrimination learning.”International Review of Neurobiol-
ogy18, pp. 263–327, 1975.

11. A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike
adaptive elements that can solve difficult learning control prob-
lems.” IEEE Transactions on Systems, Man, and Cybernetics
13(5), pp. 834–846, 1983.

12. R. S. Sutton, “Learning to predict by the methods of temporal
differences.”Machine Learning3, pp. 9–44, 1988.

13. C. Watkins and P. Dayan, “Q-Learning.”Machine Learning8,
pp. 279–292, 1992.

14. P. J. Werbos, “A menu of designs for reinforcement learn-
ing over time,” inNeural Networks for Control(W. T. Miller,
R. S. Sutton and P. J. Werbos, eds.). MIT Press: Cambridge,
MA, 1990, pp. 67–95.

15. G. Cauwenberghs, “A fast stochastic error-descent algorithm
for supervised learning and optimization,” inAdvances in Neu-
ral Information Processing Systems, vol. 5. Morgan Kaufman:
San Mateo, CA, 1993, pp. 244–251.

16. P. Werbos, “Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences,” Ph.D. dissertation, 1974.
Reprinted in P. Werbos,The Roots of Backpropagation. Wiley:
New York, 1993.

17. H. J. Kushner, and D. S. Clark,Stochastic Approxima-
tion Methods for Constrained and Unconstrained Systems.
Springer-Verlag: New York, NY, 1978.

18. H. Robins and S. Monro, “A stochastic approximation
method.”Annals of Mathematical Statistics22, pp. 400–407,
1951.

19. J. C. Spall, “A stochastic approximation technique for gener-
ating maximum likelihood parameter estimates.”Proceedings
of the 1987 American Control Conference, Minneapolis, MN,
1987.

20. M. A. Styblinski and T.-S. Tang, “Experiments in nonconvex
optimization: Stochastic approximation with function smooth-
ing and simulated annealing.”Neural Networks3(4), pp. 467–
483, 1990.

21. M. Jabri and B. Flower, “Weight perturbation: An optimal ar-
chitecture and learning technique for analog VLSI feedforward
and recurrent multilayered networks.”IEEE Transactions on
Neural Networks3(1), pp. 154–157, 1992.

22. J. Alspector, R. Meir, B. Yuhas, and A. Jayakumar, “A paral-
lel gradient descent method for learning in analog VLSI neu-
ral networks,” inAdvances in Neural Information Processing
Systems, vol. 5. Morgan Kaufman: San Mateo, CA, 1993,
pp. 836–844.

23. B. Flower and M. Jabri, “Summed weight neuron perturba-
tion: An O(n) improvement over weight perturbation,” in
Advances in Neural Information Processing Systems, vol. 5,
Morgan Kaufman: San Mateo, CA, 1993, pp. 212–219.

24. G. Cauwenberghs, “A learning analog neural network chip with
continuous-recurrent dynamics,” inAdvances in Neural Infor-
mation Processing Systems, vol. 6. Morgan Kaufman: San
Mateo, CA, 1994, pp. 858–865.

25. G. Cauwenberghs, “An analog VLSI recurrent neural network
learning a continuous-time trajectory.”IEEE Transactions on
Neural Networks7(2), March 1996.

26. F. Pineda, “Mean-field theory for batched-TD(λ),” submitted
to Neural Computation, 1996.

27. S. Grossberg and D. S. Levine, “Neural dynamics of atten-
tionally modulated pavlovian conditioning: Blocking, inter-
stimulus interval, and secondary reinforcement.”Applied Op-
tics 26, pp. 5015–5030, 1987.

28. E. Niebur and C. Koch, “A model for the neuronal implementa-
tion of selective visual attention based on temporal correlation
among neurons.”Journal of Computational Neuroscience1,
pp. 141–158, 1994.

29. G. Cauwenberghs, “Reinforcement learning in a nonlinear
noise shaping oversampled A/D converter.” To appear inProc.
Int. Symp. Circuits and Systems, Hong Kong, June 1997.

