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Abstract

We present a scheme for implementing highly-connected, reconfigurable networks of integrate-and-fire neurons in VLSI. Neural activity
is encoded by spikes, where the address of an active neuron is communicated through an asynchronous request and acknowledgement cycle.
We employ probabilistic transmission of spikes to implement continuous-valued synaptic weights, and memory-based look-up tables to
implement arbitrary interconnection topologies. The scheme is modular and scalable, and lends itself to the implementation of multi-chip
network architectures. Results from a prototype system with 1024 analog VLSI integrate-and-fire neurons, each with up to 128 probabilistic
synapses, demonstrate these concepts in an image processing task. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The human brain’s impressive computational abilities
are, to a large extent, attributable to its ability to process
information in a parallel and distributed manner. This paral-
lel, distributed architecture is enabled by the massive
connectivity of the brain’s neurons. Such an architecture
gives rise to a system whose computational capabilities
are much greater than the sum of its constituent parts.

The brain uses action potentials or ‘spikes’ to transmit
information both internally and externally. Spike commu-
nication facilitates robust long-distance communication by
means of self-restoring, all-or-none signals. The brain has
developed elaborate information coding schemes based on
its massively connected architecture and spike communica-
tion. Only recently have researchers begun to unravel the
mystery of how neural systems encode sensory information
with spikes (Rieke, Warland, de Ruyter van Steveninck &
Bialek, 1997).

The brain has on the order of 10" synaptic connections
(Koch, 1999, p.87) and a power budget on the order of 15 W
(Aiello & Wheeler, 1995). In a structure with so many
connections, it is crucial that communication between
neurons be energy efficient. It is possible that neural systems
employ spike communication not just because it is robust to
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noise, but energy efficient as well. It has been suggested that
neural coding schemes are in some sense optimized with
respect to the tradeoff between information capacity and
power consumption (Abshire & Andreou, 2000; Levy &
Baxter, 1995).

The brain’s performance in image processing and pattern
recognition tasks far exceeds that of today’s state-of-the-art
artificial systems. Massively connected architectures and
spike coding realize in the brain a computer that is very differ-
ent from conventional serial digital computers. We believe
that in order to close the performance gap between artificial
and natural systems, we must design computers that draw
inspiration from the brain’s function and structure. Modern
complementary metal-oxide-semiconductor (CMOS) very
large-scale integration (VLSI) technology provides us with
a medium that is well-suited to the implementation of neural
systems. MOS devices can operate in regimes where their
physics are identical to that of key neural structures, and
VLSI technology enables extremely dense integration of
these devices (Mead, 1990). We believe that the coupling of
this technology with neurally inspired architectures will allow
us to exploit the potential of spike coding schemes, and ulti-
mately enable us to close the performance gap.

The massive connectivity of the brain is impossible to
directly implement in VLSI due to the limitations on
connectivity within and between microchips. However, we
can take advantage of the temporally sparse nature of spike
codes and the high bandwidth of VLSI systems in order to
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Fig. 1. Address-event representation. Sender events are encoded as addresses,
sent over the bus, and decoded at the receiver. Handshaking signals REQ and
ACK are required to ensure that only one cell is communicating at a time.
Note that the time axis goes from right to left in this figure.

overcome this connectivity problem by time-multiplexing
signals from many connections on the same data bus.
Address-event representation (AER) is a communication
protocol that was developed for this purpose (Mahowald,
1994) (Fig. 1). Suppose we have an array of cells that
encode their activity in the form of spikes, and we want to
transmit these activities to another array of cells. The ‘brute
force’ approach to transmitting the activities would be to use
one wire for each pair of cells, requiring N wires for each of
N cell pairs. In an AER system, however, the location of a
spike on the sender is encoded as an address, which is sent
across the data bus. The receiver decodes the address and
reconstructs the sender’s activity. Handshaking signals REQ
and ACK are required to ensure that only one cell pair is
using the data bus at a time. This scheme reduces the
number of wires required from N to log, N. Two pieces of
information uniquely identify a spike: its location, which is
explicitly encoded as an address, and the time that it occurs,
which need not be explicitly encoded because time repre-
sents itself. The encoded spike is called an address-event
(AE).

Because AER was originally formulated to emulate the
optic nerve (Mahowald, 1994) and the auditory nerve
(Lazzaro, Wawrzynek, Mahowald, Sivilotti & Gillespie,
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1993), it implements a one-to-one connection topology. To
implement more complex neural circuits, convergent and
divergent connections are required. Several authors have
discussed and implemented methods of extending the
connectivity of AER systems to this end (Boahen, 2000;
Deiss, Douglas & Whatley, 1999; Grossberg, Carpenter,
Schwartz, Mingolla, Bullock, Gaudiano et al., 1997; Higgins
& Koch, 1999). These methods call for a memory-based
projective field mapping which enables the projection of an
address-event to multiple receiver locations.

In this paper, we propose a scheme that employs prob-
abilistic synaptic weighting in conjunction with AER and an
integrate-and-fire transceiver to implement reconfigurable
neural architectures in VLSI. We demonstrate that AER
can facilitate computation in addition to communication.
In Section 2, we describe this scheme. In Section 3, we
discuss some theoretical issues that arise in networks of
integrate-and-fire neurons with probabilistic synapses. In
Section 4, we describe how our framework can be applied
to implement the early stages of the boundary contour
system (Grossberg & Mingolla, 1985), a biological theory
of vision processing. In Section 5, we describe a hardware
prototype system that demonstrates these ideas. In Section
6, we report experimental results from the prototype system
in an image processing task. Finally, in Section 7, we
conclude the paper and discuss some future goals.

2. Address domain computation

We augment the traditional AER system to create a scal-
able, reconfigurable architecture that is capable of imple-
menting a wide range of network topologies. A routing
circuit between the sender and receiver probabilistically
routes AEs to multiple destinations in a receiving array of
integrate-and-fire (IF) cells. The IF cells enable the temporal
and spatial integration of excitatory and inhibitory AEs, and
send AEs as output (Fig. 2).

Sender address
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Receiver address and-fire
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Fig. 2. Mapping of a two-layer network into an AE look-up table with transmission probabilities. In this example, sender 1 sends an AE. An inhibitory AE is
transmitted to receiver O with 100% probability, and then an excitatory AE is transmitted to receiver 2 with 50% probability. In the implementation, the
synaptic connection table is stored in a random-access memory (RAM). The first two columns comprise the memory address, and the remaining columns

comprise the memory data.
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A two-layer network of arbitrary interconnection topol-
ogy can be mapped to the AER framework by means of a
memory-based look-up table. The first layer of the network
can be thought of as the ‘sender’ and the second layer can be
thought of as the ‘receiver’. AEs from the sender go to the
look-up table, which contains information about the desti-
nations of the AE, the polarity of the received AE, and the
weight of the connection. The possibility of multiple AE
destinations enables convergent and divergent connections.

The weight of a connection can be interpreted as the
probability of transmitting an AE from a sender location
to a receiver location. The system probabilistically gates
the transmission of AEs to implement synaptic weighting.
This scheme can only implement synaptic weights between
—1 and +1. To obtain weights with strength greater than
unity, we can simply iterate the process M times, effectively
scaling the weight by a factor M.

Each IF cell in the receiver integrates excitatory and inhi-
bitory AEs from several locations and sends AEs as output.
Because the IF array both transmits and receives AEs, we
call it a transceiver. Each cell has an associated potential
which is incremented (decremented) by excitatory (inhibi-
tory) AEs. The potential is initialized to zero and cannot go
below zero; when the potential exceeds a threshold, the cell
sends an output AE and the potential is reset to zero.

The integrate-and-fire model is analogous to cells in the
nervous system that receive EPSPs and IPSPs at the
dendrite and sum them to give a membrane potential.
When the membrane potential exceeds a threshold, a
spike is initiated and propagates down the axon and the
membrane potential is reset. An important characteristic
of the IF cell is that it is a rectifying element—when its
activity is encoded as a rate, it is not capable of expres-
sing negative quantities.

The combination of the routing circuit and the IF trans-
ceiver comprises a module that can be connected both in
parallel and in series to create large-scale, multi-layer
neural systems. The connectivity of the modules can
easily be reconfigured by altering the contents of the
look-up table. Synaptic plasticity can be implemented on
the fly by altering not only the transmission probabilities,
but also the connection topology. This provides a reconfi-
gurable extension to on-chip learning (Cauwenberghs &
Bayoumi, 1999).

3. Modeling issues

Networks of integrate-and-fire neurons exhibit drastically
different dynamical properties than networks of McCul-
loch—Pitts neurons or other mean-rate abstractions of infor-
mation processing in neural systems (Maass & Bishop,
1999). In addition, the probabilistic nature of the synaptic
weighting is a source of stochasticity in neural systems,
which are known to be highly stochastic (Koch, 1999).
Before describing our hardware implementation of

networks of integrate-and-fire neurons with probabilistic
synapses, we address issues that arise in their modeling
and affect the computation that they perform.

3.1. Probabilistic synaptic weighting

The stochastic nature of the synapse is seldom used in
models of neural systems. One reason for introducing prob-
abilistic synaptic weighting in our address-event based
system is one of convenience of implementation, since
transmitted events carry no weight by themselves and send-
ing multiple events to implement synaptic weighting is inef-
ficient. We justify this choice by considering that the
stochastic encoding has little impact on the dynamics of
spiking neurons. Furthermore, we argue that a probabilistic,
fixed-amplitude model for the synapse is no less physiolo-
gically justified than a deterministic model with variable
amplitude.

3.1.1. Neurological basis

Physiological studies show that a synaptic efficacy w can
be expressed as the combined effect of three physical
mechanisms:

w = abc (D

where a represents the number of quantal neurotransmit-
ter release sites, b is the probability of synaptic release
per site, and ¢ is a measure of postsynaptic effect of the
synapse (Koch, 1999). Many neural network models
neglect the quantal nature of synaptic transmission (a =
constant) and assume a presynaptic event is always trans-
mitted (b = 1), thus absorbing all of the weight variations
in the ¢ variable. Our implementation instead holds ¢
constant (¢ = 1) and varies b (the transmission probabil-
ity) and possibly a (the number of synaptic iterations, M
in Section 2). While the two approaches differ, it is clear
that the resulting synaptic weighting quantitatively gives
the same results. The equivalence is analyzed in further
detail in Section 3.1.3.

3.1.2. Poisson statistics

An important consideration of the probabilistic synapse
weighting is the effect is has on the statistics of the post-
synaptic potential, thereby affecting the dynamics of the
integrate-and-fire neuron to which it connects. We will
investigate the limiting case where presynaptic spiking
activity of a given mean rate is either Poisson distributed
or deterministic with regular inter-spike interval (ISI).

When the input activity is encoded by spike rate and the
intervals of the events are approximately Poisson distribu-
ted, probabilistic transmission does not significantly alter
the statistics of the input. This can be demonstrated if we
model the probabilistic transmission as a Bernoulli process,
as modulating a Poisson process with rate A by a Bernoulli
process with parameter p gives a Poisson process with rate
pA (Parzen, 1962).
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If the events have a regular interval, however, the prob-
abilistic nature of the synapses will add stochasticity to
the system. To quantify this, we must first introduce a
measure of a spike train’s regularity. The coefficient of
variation of the ISI distribution is a useful measure of the
variability of a spike train (Koch, 1999). If T is a random
variable that represents the ISI, the coefficient of variation
is given by
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For a periodic spike train, Cy = 0, and for a Poisson spike
train, Cy = 1. If we have a periodic spike train with an ISI
of 7 and we use a Bernoulli process with parameter p to
gate the spikes, the ISI of the resulting process is given by
the geometric distribution

Pr(t =k = ¢ 'p, k=1, (3)

where ¢ =1 — p and k is an integer. This distribution has
a mean of 7/p and a variance of (7/p)’q. For this ISI
distribution,
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As g approaches unity, we obtain a Poisson distribution
for the transmitted spike train. Notice however, that
events only occur at integer multiples of the ISI 7, and
so the distribution of the Bernoulli modulated spike train
is never truly Poisson.

Of course there is more to a spike train than the firing rate
and variance, and we must also consider the effect that the
probabilistic synaptic weighting has on time-domain corre-
lation between pairs of spike trains. For instance, phase
information (Lyon & Shamma, 1996), coincidence detec-
tion (Simmons, Saillant, Ferragamo, Haresign, Dear, Fritz et
al., 1996) and inter-spike interval statistics (Ghitza, 1986)
are central to models of the auditory system. More gener-
ally, temporal correlations also govern mechanisms of
learning and memory (Gerstner, Kempter, van Hemmen &
Wagner, 1996).

3.1.3. Correlations and synaptic plasticity

Models of synaptic plasticity frequently involve, in one
fashion or another, a correlation between presynaptic and
postsynaptic activity. To validate the functional equivalence
between probabilistic and deterministic synaptic weighting,
we briefly consider the effect of probabilistic weighting on
the correlation between events. The precise effect on neural
dynamics is intractable because of the nonlinearity of the
integrate-and-fire neural activity, but one can make simple
observations by considering correlations between postsy-
naptic events preceding the neural transfer function.

Probabilistic synaptic weighting can be represented as a
transmission probability on a graph. Let Pr(x) be the prob-
ability that a presynaptic spiking event (x = 1) occurs in a

given time window, and Pr(y) be the corresponding prob-
ability of a postsynaptic event (y = 1) in the same window.
Then

Pr(y) = Pr(y|x)Pr(x) = wPr(x) ®))

where w represents the conditional probability of the
synapse transmitting an event received. Clearly, the mean
rate (or expected value) of y equals that of x scaled by the
synaptic probability w. An identical mean rate would have
been obtained for a deterministic synapse with amplitude
weighting of same strength, y = wx. This equivalence is
consistent with the product form of the terms b and ¢ in
the expression of w in Eq. (1).

The equivalence extends directly to correlations
between events. Let Pr(x;, x,) be the joint probability
that presynaptic events at synapses 1 and 2 occur within
a given time window,! and Pr(y;, y,) the probability of
postsynaptic events at synapses 1 and 2 in the same
window. Then

Pr(y1,y2) = Pr(y;, yalx1, x2)Pr(xy, xp). (6)

Since each synapse can be modeled as an independent
stochastic process,

Pr(yy, y2[x1,%2) = Pr(y;[x))Pr(ya]xz) = wyw, @)

where w; = Pr(y;|x;) represents the transmission prob-
ability of the synapse from x; to y, Substituting Eq.
(7) into Eq. (6) gives

Pr(y,,y2) = wiw,Pr(x;, x,). (8)

As a consequence, the cross-correlation (or mean-rate
coincident activity) of coincident postsynaptic events
is that of the presynaptic events scaled by the product
of the synaptic weights:

EQy2) = wiwE(x)x). (&)

An identical expression for the cross-correlation would
have been obtained using deterministic synaptic weight-
ing with amplitudes w; and w,, i.e. y; =wx; and y, =
wyX,. This simple and intuitive result extends directly to
correlations of higher order between multiple postsynap-
tic events. It does not, however, account for the effect
of dynamics and saturation in the IF neuron.

3.2. Integrate-and-fire neuronal transfer function

In the ubiquitous McCulloch—Pitts model of neural
computation, the neuron activation function implements
rectification and saturation of an otherwise linear response
to synaptic units. The rectifying and saturating dynamics of
IF neurons performs a similar nonlinear activation function,
but only to a first-order approximation. This is an important
consideration in interpreting the results we obtain from the
prototype system, as will be evident in Section 6.

! Identical arguments apply to the case where event 1 occurs in a given
window preceding event 2.
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Fig. 3. (a) State-transition diagram for a Markov chain model of the potential of an IF cell. This model was used to determine the time of threshold crossing. p
is the probability that an event is excitatory. (b) Comparison of the McCulloch—Pitts and Markov models for an IF cell for two values of p. The y-axis shows
the difference between threshold crossing times in the McCulloch—Pitts model and the Markov model, normalized to the McCulloch—Pitts model.

3.2.1. Rectification dynamics

In a McCulloch—Pitts abstraction, a rectifying activation
function could model the response of the IF cell to the
integrated synaptic contributions. In this simplifying
model, the output spike count is approximately proportional
to the rectified difference between the excitatory spike
count, Kg, and the inhibitory spike count, K], as given by

7“ E ) if K > K;i;
| | E I
out 0

0 if Ky <K,

(10)

where s is the potential step size, 6 is the threshold, and |-
represents the flooring operation. On average, the threshold
crossing occurs after 6/(2p — 1) events, where p is the prob-
ability that an incoming event is excitatory, and 1 — p is the
probability that the event is inhibitory.

In reality, the effect of the IF dynamics on the rectifying
response is not as simple as Eq. (10) suggests. Because the
potential is clamped to zero whenever the net input is negative,
the order in which inhibitory and excitatory events arrive
matters. By constructing a probabilistic model of the IF cell,
we can estimate the effect of dynamics in the rectification to
first order. The state of the potential of the IF cell can be
modeled as a Markov chain, as depicted in Fig. 3(a). By iter-
ating the state-transition matrix of the Markov model, we can
empirically determine the probability distribution of the
potential state. In the Markov model, the positive bias induced
by the rectification will cause the threshold crossing on aver-
age to occur earlier than in the McCulloch—Pitts model.>

2 We take the threshold crossing time as the earliest time in which the
threshold state (V = 6) is the most likely state.

Fig. 3(b) shows a plot of the difference between the
threshold crossing times in the McCulloch—Pitts model
and the Markov model, normalized to the McCulloch—
Pitts model threshold crossing time. The difference
between the two decreases as the threshold increases, as
the most likely state of the probability distribution has
more time to move away from the zero state (V=0)
where inhibitory spikes can be lost. The difference is
less pronounced when the ratio of excitatory to inhibitory
events increases, as this too shifts the probability mass
away from the zero state.

3.2.2. Saturation dynamics

Real neurons have a maximum firing frequency which is
set by their refractory period. The refractory period is due to
the slow hyperpolarization of the membrane following an
action potential. Saturation is also inherent in the hardware
implementation discussed in Section 5, but mainly with a
different physical origin. Although there is a refractory
period associated with resetting the potential after a spike,
the maximum firing frequency is determined for the most
post by the global activity of the IF transceiver. It is char-
acteristic of AER systems that the bandwidth of the channel
is dynamically allocated to the active cells, and the speed of
operation is a function of the number of cells that are simul-
taneously active (Apsel & Andreou, 2001).

4. Application: boundary contour system
We can use the address domain computation scheme to

implement large multi-chip VLSI neural networks. One
example of a network architecture that lends itself to
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Fig. 4. Example mapping of early stages in the BCS architecture onto a table-based transceiver architecture. The patterns represent 8 X 8 look-up table filter
kernels and the transfer function symbol represents an integrate-and-fire transceiver. Stage 1 performs normalization and contrast enhancement. Stage 2

extracts boundaries of different orientations in parallel, and then combines them.

efficient implementation by our scheme is the boundary
contour system (BCS) for image segmentation and bound-
ary completion in the presence of clutter and occlusion
(Grossberg & Mingolla, 1985; Grossberg, Mingolla &
Williamson, 1995; Mingolla, Ross & Grossberg, 1999).

There are several different approaches to implementing
this system in VLSI. Our approach is one in which the
connectivity is fully programmable, and long-range connec-
tions can be implemented as efficiently as short-range
connections. This has certain advantages over a scheme in
which all connectivity is hardwired, which provides higher
computational bandwidth and focal-plane operation but at
the expense of significant overhead in wiring resources
implementing nearest-neighbor and diffusive spatial kernels
(Cauwenberghs & Waskiewicz, 1999). It is also possible to
combine hardwired short-range cellular interconnects on-
chip with reconfigurable long-range interconnects using
AER transduction (Serrano-Gotarredona, Andreou &
Linares-Barranco, 1999).

Fig. 4 illustrates one possible scheme of mapping the
early stages of the BCS onto a system of look-up tables
and IF transceivers. The patterns are 8 X 8 look-up table
filter kernels, which are followed by a symbol that repre-
sents the transfer function of transceiver array. The symbol
is intended to evoke the rectifying and saturating character-
istics of the IF cell. In the first stage, the image is normalized
and contrast is enhanced by the summing of the output of
ON-center OFF-surround cells and OFF-center ON-
surround cells. In the second stage, multiple orientations
are extracted in parallel and these parallel outputs are
combined to extract the boundaries of the input image.

To illustrate how the BCS architecture can be realized
with neural filters, Fig. 5 shows the simulated output of
the system in Fig. 4, using rectified convolutions to model
the look-up tables and transceivers.

Next, we describe the system we developed in VLSI hard-
ware to validate the general architecture and experimental
results from a fabricated prototype.

5. Implementation

To demonstrate these ideas, we implemented and tested a
prototype system. The system consists of a printed circuit
board with a full custom integrated circuit 32 X 32-cell
address-event integrate-and-fire transceiver, a
128 k X 16 RAM for storage of the routing table and synap-
tic weights, and a microcontroller which probabilistically
gates the transmission of AEs and handles the handshaking
between the transceiver and the outside world.

5.1. Address-event integrate-and-fire transceiver

The address-event IF transceiver was designed on a
1.5% 1.5 mm? die in a 0.5 um process (A = 0.3 pm). A
photograph of the chip die is shown in Fig. 6. The IF
transceiver is so named because it receives AEs as input,
integrates them, and transmits AEs as output. Incoming
AEs are decoded and directed to one of the 1024 randomly
accessible cells. An output address encoding system inde-
pendently services spiking event requests in the array and
sends outgoing AEs.

Each transceiver cell is a VLSI IF neuron with all of the
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(a) Input

(b) Output of stage 1

(c) Output of 60° stream

(f) Output of stage 2

(e) Output of 120° stream

Fig. 5. Results of a simulation where the early stages of the BCS are mapped to neural filter kernels, implemented as convolutions followed by rectifications.
(a) Input. (b) Output of Stage 1. (c)—(e) Output of parallel orientation streams. (f) Output of Stage 2.

properties of IF neurons that we have addressed in Section
3. Fig. 7 shows a circuit simulation of an IF cell that receives
a repeating sequence of each three excitatory AEs followed
by one inhibitory AE. A charge pump circuit (Cauwen-
berghs & Yariv, 1994) removes charge from or deposits
charge on a capacitor which stores the potential, as shown
in the —IgroRrg trace of Fig. 7. The potential is represented as
the active low voltage Vsrorg On the storage capacitor: zero
potential is Vpp =15V, excitatory events bring Vsrorg
towards GND (zero) and inhibitory events bring Vgrorg
towards Vpp. The polarity of the Vgrorg trace in Fig. 7 is
inverted so as to evoke a more conventional snapshot of the
potential in an IF neuron. Vgrogg is gradually ‘incremented’
towards the threshold, which is 1.24 V. When Vgrorg
reaches the threshold, positive feedback drives it to GND,
which activates a request REQ. The output encoding system
on the periphery of the IF array transmits the event off the
chip and activates the acknowledgement ACK, which resets
VSTORE to VDD and REQ to GND.

5.1.1. Transceiver operation

A schematic of a 4 X4 version of the transceiver is
shown in Fig. 8. Each IF cell is randomly accessible. A
monostable circuit controls the timing of the input
request/acknowledge cycle (INACK/INREQ). The lower
half of the incoming address is decoded into column
selection information, which is combined with POL
and the monostable pulse to generate the CPOL signals
which go to all of the columns in the array. The upper
half of the address is decoded into row selection infor-
mation to generate the RSEL signals. For the encoding
of the output, a ring of flip-flops scans the row for a
request (RREQ). When a row request is found, a similar
ring scans the columns for a column request (CREQ).
The halted row scanning pulse (RSCAN) is fed back
into the array so that the column scanner only scans
cells in the active row. When both row and column
requests are found, the transceiver sends an output
request.
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Fig. 6. Photograph of the address-event integrate-and-fire transceiver chip die.

5.1.2. Integrate-and-fire circuit

A schematic of the VLSI implementation of the IF cell is
shown in Fig. 9. It contains 14 transistors and takes up an
area of 68 X 68 A2, The cell has an ~88 fF storage capacitor
which holds the potential Vgrogg.

Transistors M1-M4 serve to select the cell and incre-
ment or decrement the potential accordingly. When
RSEL and RSEL are activated (row selection), the
value of CPOL (column selection) is passed to Vcp.
M3 and M4 comprise a charge pump that injects charge
on or removes charge from Vgrore. Vap and Vpy bias M3
and M4 in the subthreshold regime. If CPOL = GND,
M4 is on, charge is removed from the capacitor, incre-
menting the potential. If CPOL = Vpp, M3 is on, charge
is injected on the capacitor, decrementing the potential. If
CPOL = Vpp/2 (the column is not selected), then the
potential is unchanged. The switch injection-free opera-
tion of the charge pump allows increments and decre-
ments as small as 50 pV (Cauwenberghs, 1997). The
table in Fig. 9 summarizes the control of the cell selec-
tion and charge pump.

M5, M6 and MI11 (the drain of which is normally
connected to Vgrorg) comprise a simple latching compara-
tor. When Vsrogre approaches the threshold set by Vrpgresn
and Vpjas, Veowp is pulled high, turning on M 11, which pulls
down Vgrorg. This positive feedback forces Vspogrg to GND.
Vcomp drives the gates of M12 and M14, which form the
pulldown of wired-NOR gates for column and row, respec-
tively. The output of the wired-NORs, CREQ and RREQ,

represent the column and row output requests of the IF cell.
CREQ can only become active when the row scanner selects
the row (RSCAN is activated). M7-M10 can be thought of
as a CMOS NOR where GND is gated by M11. The activa-
tion of RACK and CACK resets Vsrorg to zero potential, at
voltage Vpp.

5.2. Address-event routing

The IF transceiver operates in conjunction with a RAM
and a microcontroller, which implement the network topol-
ogy and the probabilistic synaptic computation. In our
experimental setup, all of the elements were placed on a
printed circuit board and interfaced with a PC. Fig. 10
shows the board in three different configurations. Fig.
10(a) shows the programming mode, where the network is
configured or reconfigured. RAM address and data are
supplied by the PC while the microcontroller scrolls through
the synapse indices.

In feedforward mode (Fig. 10(b)), incoming AEs are sent
from the PC to the RAM, and the microcontroller scrolls
through all of the synapses projecting from the input
address. For each incoming AE, the microcontroller gener-
ates a random number which is compared to the synaptic
weight magnitudes. If a weight magnitude is larger than the
random number, the event is projected to the transceiver
address that corresponds to the synapse. Output AEs are
sent from the IF transceiver to the PC where they are
recorded.
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Fig. 7. Example waveforms in the VLSI integrate-and-fire cell illustrating an integrate-and-fire cycle. The waveforms were obtained from a Spectre®
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Fig. 9. VLSl integrate-and-fire cell. The cell selection block takes input from the periphery and converts it to input for the charge pump (see table in inset). The
charge pump removes charge from or deposits charge on the storage capacitor. The comparator detects whether the potential exceeds the threshold. Once it
does, the comparator latches and the column and row request signals are activated. After the event is communicated off the chip, the column and row

acknowledge signals reset the potential on the storage capacitor.

The system can also operate in a recurrent mode (Fig.
10(c)), where output AEs are routed from the transceiver
to the RAM. The RAM then projects events back to the
transceiver, as before. The feedforward and recurrent
modes can be combined to create networks that have both
hidden units and output units.

6. Experimental results

As a proof of concept, we examined an image filtering
problem (Fig. 11). We used an image from a Matlab® demo
as our test image (Fig. 11(a)), and a one-dimensional Lapla-
cian that enhances vertical edges as our filter ([1 —2 1]).
First, we performed simply a convolution followed by a
rectification (Fig. 11(b)). Then, we performed the filtering
in the address-domain with our VLSI system (Fig. 11(c)).
The number of times an event was sent from a pixel in the
input image was proportional to the pixel’s intensity. A total
of ~1,160,000 events were sent, corresponding to 2550 for
the brightest input pixel. Vigrgsy and Vgias were set to 2.5
and 0.8 V, giving a firing threshold of 1.24 V (zero potential
at 5 V). The excitatory bias (Vpy) was set such that 40 spikes
were required to reach threshold. The inhibitory bias (Vgp)
was tuned until the experimental results matched those of
the rectified convolution. At that point, inhibitory events
were seven times as strong as excitatory events. We also

ran a detailed Matlab simulation of the system that incorpo-
rated the probabilistic transmission of events and the recti-
fying properties of the IF cells (Fig. 11(d)). The threshold
and excitation/inhibition ratio were set to match the experi-
mental system.

If we consider the concepts presented in Section 3.2.1,
we can see why such strong inhibition was required to
match the rectified convolution results. At a threshold
level of 40 events, the positive bias in the response due
to rectification is significant. Therefore, we adjusted the
inhibitory strength to counteract the positive bias. As
shown in Fig. 3, increasing the threshold also mitigates
this effect, but this requires more time in order to get a
satisfactory number of spikes.

Both the experimental results (Fig. 11(c)) and the simula-
tion results (Fig. 11(d)) display some noise as compared
with the rectified convolution (Fig. 11(b)). This is primarily
due to the quantization of the output intensity to ~20 levels.
There is some minor additional noise in the experimental
results mainly due to transistor mismatch in the charge
pump cells.

The experiment ran in less than 5 min, while the simula-
tion ran for more than 2 h. The speed of the experimental
system was limited by the response of the I/O card in the PC
and the 5 MHz clock speed of the microcontroller. The I/O
interface is mainly for purposes of characterization and
acquisition; in actual applications interfacing with silicon
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scrolls through the synapse indices. (b) In feedforward mode, the PC sends and receives events. (c) In recurrent mode, the output of the IF transceiver is

connected to the RAM and the PC is removed from the loop.

retinas, silicon cochleas, or other transceivers, the slow PC
could be circumvented. The microcontroller could be
replaced by either a field-programmable gate array
(FPGA) or integrated into the transceiver for further gains
in operating speed. In such a system, the transceiver chip
limits the maximum available speed to about 10* events/s,
and the system would be capable of running the same
experiment in less than 0.1 s.

7. Conclusions

We have presented an architecture for performing
computations in the address domain. This approach
enables the implementation of massively connected
networks of integrate-and-fire neurons in VLSI. We
have employed probabilistic synaptic weighting and
memory-based look-up tables to implement reconfigur-
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(a) Original image

(c) Experimental results

(b) Rectified convolution

(d) Simulation results

Fig. 11. Filtering in the address domain with a rectified Laplacian that enhances vertical edges. (a) Input image, scale = [0, 2550]. (b) Rectified convolution,
arbitrary scale. (c) Experimental results from the VLSI system, scale = [0, 22]. (d) Simulation results, scale = [0, 18].

able connectivity. While the results here used one look-
up table and transceiver, the architecture is scalable and
is well suited to multi-chip systems. Many modules can
potentially be connected in series and in parallel to
implement large-scale, multi-layered neural processing
systems.

Current efforts are focused on completely integrating the
system, the assembly of a multi-chip BCS system, investi-
gation of the potential for plasticity and learning in the
address domain, and the utilization of coding schemes that
rely on spike timing. We also hope to explore the extension
of the concepts presented here to the optoelectronic domain
(Apsel, Kalayjain, Andreou, Simonis, Chang, Datta et al.,
2000).
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