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Training of support vector machines (SVMs) amounts to solving a quadratic program-
ming problem over the training data. We present a simple on-line SVM training algo-
rithm of complexity approximately linear in the number of training vectors, and linear
in the number of support vectors. The algorithm implements an on-line variant of se-
quential minimum optimization (SMO) that avoids the need for adjusting select pairs
of training coefficients by adjusting the bias term along with the coefficient of the cur-
rently presented training vector. The coefficient assignment is a function of the margin
returned by the SVM classifier prior to assignment, subject to inequality constraints.
The training scheme lends efficiently to dedicated SVM hardware for real-time pattern
recognition, implemented using resources already provided for run-time operation. Per-
formance gains are illustrated using the Kerneltron, a massively parallel mixed-signal
VLSI processor for kernel-based real-time video recognition.
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1. Introduction

On-line learning is the key to computational intelligence in a real-time setting,

sustained by adapting continuously to changes in the environment. Examples

of applications requiring continuous learning and adaptation range from channel

equalization in communications to learning concept drifts in surveillance applica-

tions. Incorporating on-line learning functions in hardware for real-time pattern

recognition impose speed and memory constraints that can only be met by imple-

menting simple learning architectures on silicon.4
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Support Vector Machines (SVMs)23 have emerged as a principled approach

to machine learning for classification and regression, demonstrating state-of-art

performance in many applications and offering an attractive alternative to artificial

neural network and expert-based approaches.

From a hardware perspective SVMs are attractive because of their simple func-

tional form that lends naturally to parallel implementation. Massive parallelism

results in very large throughput and energetic efficiency as needed for real-time

recognition and mobile operation. In essence, SVMs perform template matching

using a kernel distance metric, and construct a linear combination of the kernel

matching scores to arrive at the classification answer. The kernel evaluations

at the core of SVM computation are implemented most efficiently in a scalable

array processor architecture with fine-grain distributed memory.7 The large-margin

formulation of SVMs produces a sparse representation that reduces the required

number of stored templates in the array to the number of support vectors, usually

a small fraction of the training data.

The challenge of implementing SVMs in silicon is to incorporate on-line learning

into the architecture, to arrive at the support vectors and their weighting coeffi-

cients while training data is presented. SVM training entails solving a linearly con-

strained quadratic programming (QP) problem with box inequality constraints.3

In principle, the QP procedure can be formulated as a constrained Hopfield neural

network, with a natural analog circuit implementation.1 The problem with this ap-

proach is the area of the implementation scales with the square of the number of

data points, which becomes impractical for very large data sets, particularly in an

on-line setting.

Several approaches to efficient SVM training in software have been formulated,

that decompose the QP task into a sequence of smaller scale optimization

subproblems.11,13,18,21 Yet, each of these decomposition methods operate on

several (at least pairs of) training points and their coefficients simultaneously, by

selection criteria that do not directly lend to on-line implementation. Most attrac-

tive for efficient implementation are on-line methods that assign support vectors

and their coefficients sequentially, in the order in which training data is received.

Stochastic approximation techniques based on stochastic gradient descent6,14 are

particularly simple to implement, but require multiple passes through the data for

convergence or give approximate results. Incremental SVM learning5 formulates

the exact QP solution recursively, but assumes internal state variables to update

previously assigned coefficient values, requiring additional resources in hardware

implementation.

An on-line sequential SVM training scheme, tailored for efficient use with

dedicated parallel kernel hardware, is presented in Sec. 2. The algorithm assigns

the coefficient of the most recently presented training sample based on its label and

the decision function, and adjusts the bias term accordingly. Section 3 presents the

Kerneltron, a massively parallel VLSI processor for real-time kernel-based pattern

recognition, as the basis for on-line training experiments given in Sec. 4.
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2. Support Vector Machines and On-Line Learning

In this section we first briefly review basics of SVMs and kernel computation in

light of efficient implementation. Then we present an on-line training scheme and

corresponding implementation architecture. We will assume two-class SVM classi-

fication although it is straightforward to extend the results to the multiclass case

and to SVM regression.

2.1. SVM classification

SVMs are rooted in principles of statistical learning theory which formulate bounds

on the generalization performance of a learning model based on a structural measure

of its complexity.23 SVMs minimize structural risk by maximizing a measure of

margin in the classification (or regression) of the training examples.

Margin maximization leads to a solution expressed uniquely in terms of support

vectors — usually a small subset of training vectors located on the margin. An

input pattern X is classified into class y ∈ {−1, +1} according to

y = sign(f(X)) (1)

where the decision function f(X) takes the form of a linear combination of kernels

K(Xm,X) between the presented vector X and each of the training vectors Xm

f(X) =
∑

m

αmymK(Xm,X) + b (2)

weighted by training labels ym and coefficients αm. The coefficients αm are nonzero

only for training data that are support vectors, so that the expansion (2) is sparse

and the support vectors capture the relevant information present in the training

data.a Values for the coefficients αm and bias term b are determined by a QP

training criterion that follows in Sec. 2.3.

K(·, ·) is a symmetric positive-definite kernel, that implies a transformation of

the data to feature space in which the kernel represents an inner product.3,9 In

general, the feature map represents the data in higher dimensions, and for certain

choices of kernels (such as Gaussian) the feature space becomes infinite dimensional.

Therefore evaluating the inner product directly in feature space becomes impractical

or impossible, and kernels offer a computationally tractable alternative. However,

most practically used forms of kernels can themselves be represented as nonlinear

transformations of inner products in data space, as shown next.

2.2. Inner-product based kernels

Most frequently used kernels K(·, ·), such as polynomial classifiers, multilayer

perceptrons,b and radial basis functions,22 can be generally classified as one of

aIn what follows we will denote Xm interchangeably as training vectors with αm ≥ 0, and as the
subset of support vectors with αm > 0. M denotes the number of support vectors.
bWith logistic sigmoidal activation function, for particular values of the threshold parameter only.
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the following forms:

(1) Inner-product based kernels (e.g. polynomial; sigmoidal connectionist):

K(Xm,X) = k(Xm ·X) = k

(

N
∑

n=1

Xmn Xn

)

. (3)

(2) Radial basis functions (L2 norm distance based):

K(Xm,X) = k(‖Xm −X‖) = k





(

N
∑

n=1

|Xmn −Xn|
2

)

1

2



 (4)

where k(·) is a monotonically nondecreasing scalar function subject to the Mercer

condition on K(·, ·).9,23

For purposes of efficient realization in a mixed-signal architecture that will

become evident in Sec. 3, we assume kernels of the inner-product type (3) or kernels

reducing to inner product computation. The limitation to inner-product based ker-

nels implies no loss of generality, as inner-products comprise the most intensive

part of the computation in evaluating kernels of both types (3) and (4). Indeed,

expansion of the L2 norm in radial basis functions (4) reduces to inner-product

form:

k(‖Xm −X‖) = k((−2Xm ·X + ‖Xm‖
2 + ‖X‖2)

1

2 ) (5)

where the last two terms depend only on either the input vector or the support

vector. These common terms are of much lower complexity than the inner-products,

and can be easily precomputed or stored in peripheral registers.

2.3. Training formulation

Soft-margin classification SVMs minimize a compound measure of structural and

empirical risk, controlled by a single regularization parameter C. In the dual

formulation of the training problem, the coefficients αi are obtained by minimizing

a convex quadratic objective function subject to box inequality constraints of the

form:23

min
0≤αi≤C

: H =
1

2

∑

i,j

αiQijαj −
∑

i

αi (6)

with symmetric positive definite kernel matrix Qij = yiyjK(Xi,Xj). The presence

of a bias term b in (2) implies an additional linear equality constraint
∑

i

yiαi = 0 , (7)

which can be absorbed by adding a Lagrange term to (6):2

max
b

min
0≤αi≤C

: H =
1

2

∑

i,j

αiQijαj −
∑

i

αi + b
∑

i

yiαi . (8)
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The first-order conditions on H in (8) reduce to the Karish–Kuhn–Tucker (KKT)

conditions:2

gi =
∂H

∂αi

=
∑

j

Qijαj + yib− 1 = yif(Xi)− 1











≥ 0; αi = 0

= 0; 0 < αi < C

≤ 0; αi = C

(9)

h =
∂H

∂b
=
∑

j

yjαj = 0 (10)

which divide the training data in three categories based on the sign of the margin

variable gi: margin support vectors (gi = 0); error support vectors (gi < 0) with

coefficients at bound C; and the remaining discarded vectors (gi > 0).

2.4. Hardware complexity of SVM training

The similarity between the constrained quadratic form (6) and the Lyapunov energy

function of a Hopfield neural network suggests an analog circuit for SVM training

in the form of a recurrent neural network in which neurons represent coefficients

αi, and connection strengths represent the kernel entries Qij .
1 Thus the size of the

network scales with the square of the number of data points and practical hardware

implementation is limited to small training problems in a batch-mode setting.

Incremental SVM learning5 offers an exact on-line alternative with scalable

implementation. The incremental approach updates the solution for addition of

a single training sample Xi by incrementing the coefficient αi and simultane-

ously adjusting previously assigned coefficients αj (j < i) to satisfy the KKT

conditions (9) and (10) on the present and all previous training samples. Every

margin-misclassified (gi ≤ 0) training vector Xi becomes a support vector and is

stored in the array, and the corresponding (nonzero) coefficient αi is computed

using a recursive matrix operation of dimensions square in the number of margin

(not error) support vectors. Since the number of margin vectors is usually small

and does not grow with the number of training vectors, computation and storage

requirements to implement incremental learning are modest, but imply an overhead

in hardware implementation.

Simple on-line, approximate estimation of the αi coefficients is obtained by

performing purely sequential optimization and discarding updates in previous

coefficients αj (j < i). This leads to efficient implementation as presented in the

next section.

2.5. On-line update rule

On-line training allows to find a solution based on partial training data, and update

it as more training data becomes available without the need to fully retrain the

machine in batch mode. We formulate a simple SVM on-line learning algorithm
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that assumes same core implementation resources as needed for computation of the

decision function in (1), with minimal overhead in the implementation.

In the simplest on-line learning scenario each training sample {Xi, yi} arrives

sequentially, one sample every time instant i. For each new sample the coefficient

αi is adjusted to satisfy its own KKT margin conditions (9), while retaining the

other coefficients αj at fixed values.c This sequential assignment results in a simple

update formula, in terms of the (kernel-normalized) decision function returned by

the classifier prior to the new assignment:

αi =











0; gi ≥ 0

−gi/Qii; −CQii < gi < 0

C; gi ≤ −CQii

(11)

where gi = yif(Xi)−1 =
∑

j<i Qijαj +byi−1. The update (11) performs sequential

steepest descent of the objective function H in (8), and thus is guaranteed to

converge asymptotically to the global minimum of H , with a global rate that

depends on the conditioning of the kernel matrix Qij and value of regularization

parameter C.

A particularly simple update rule is obtained for self-normalized kernels, which

satisfy Qii = K(Xi,Xi) ≡ 1, avoiding the need for division and multiplication in

implementation of (11). Self-normalized kernels include radial basis kernels of the

form (4), and the savings during training justify the extra computational effort in

constructing the L2-norm using inner-product primitives in (5).

The value assignment for the bias term b is more involved, as the sequential

coefficient assignment (11) violates the equality constraint (10) by construction.

Standard SVM approaches to sequential minimum optimization11,13,21 satisfy the

equality constraint exactly through coupling updates in at least two coefficients

simultaneously. The on-line sequential version presented here avoids the need for

updating two or more coefficients simultaneously by adjusting the bias term along

with the coefficient update (11) as to approximately satisfy the equality constraint.

This could be accomplished through stochastic gradient ascent of the objective

function H in (8), by specifying an incremental update

∆b = µi

∑

j≤i

yjαj . (12)

The choice of learning rate sequence µi ≥ 0 deserves special attention.

Consider the change in margin variables gj under influence of the change in

bias term b. The objective of training is to satisfy all KKT conditions; however the

sequential update (11) only satisfies the margin KKT condition (9) on the selected

training sample. The bias update (12) regulates the sum
∑

j yjαj towards zero as

long as µi ≥ 0. The amplitude of µi can be chosen as to minimize a measure of

discrepancy in the remaining margin KKT conditions. A sensible (heuristic) choice

cFor now we ignore the equality constraint (10).



May 5, 2003 11:51 WSPC/115-IJPRAI 00247

Silicon SVM with On-Line Learning 391

for the update ∆b is one that minimizes the Lν norm (ν = 1, 2) of the margin

variables gj for the margin support vectors: min∆b :
∑

j∈M |gj+yj∆b|ν , whereM =

{j|0 < αj < C}. The L2 norm (ν = 2) results in an update ∆b∗ = − 1
#M

∑

j∈M yjgj

that centers the mean of the margin variables gj over the margin vectors (j ∈ M).

Similarly, the L1 norm (ν = 1) leads to an update ∆b∗ = −medianj∈M{yjgj}

that centers the median of gj over M. In either case, the polarity of the update

could imply a negative value of µi in (12). A nonnegative value of µi is enforced by

rectifying the update if necessary,

∆b =

{

∆b∗ if ∆b∗
∑

i yiαi > 0

0 otherwise
(13)

thus guaranteeing global asymptotic convergence towards satisfying the equality

constraint (10).

Computation of ∆b∗ assumes updated gj values accounting for cumulative

changes in coefficients and bias terms, gj =
∑

`≤i Qj`α` + byj − 1. In the L2-

norm case (mean bias centering), the computation is carried through efficiently in

recursive form:

∆b∗ ← ∆b∗ −∆b−∆αi

1

#M

∑

j∈M

Qijyj (14)

using state variable ∆b∗, and with knowledge of the previous bias update

∆b and coefficient update ∆αi. The last term in (14) reduces to

−yi∆αi
1

#M

∑

j∈M K(Xi,Xj) and amounts to a sum operation on select kernels

computed in the evaluation of gi in (11).

The accuracy of the sequential on-line training algorithm, evaluated on the UCI

Diabetes dataset, is illustrated in Fig. 1. Components of the data are mean and

variance normalized, and a Gaussian kernel is used with variance σ2 = 10. For

C = 1, batch (exact) training over the first 576 samples returns a test error of

21% on the remaining 192 samples. A single sequential on-line pass through the

same training data (in random order) returns a test error of 23% for median bias

centering, and 27% for mean bias centering. Clearly, the L1 norm is more robust,

but the computation of the L2 norm using recursive update is simpler. Convergence

and accuracy can be improved by repeated presentationd of the training data, as

shown in Figure Figs. 1(c) and 1(d). For both median and mean bias centering, five

sequential passes through the training data (in random order) suffice to deliver the

baseline test error of 21%.

2.6. On-line architecture

A parallel architecture implementing on-line sequential SVM learning in conjunc-

tion with a dedicated kernel processor is depicted in Fig. 2. For simplicity the update

dUpon subsequent passes of previously presented data, the coefficient αi needs to be reset to zero
in the evaluation of the decision function f(Xi) and margin variable gi prior to assignment.
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Fig. 1. Convergence and accuracy of on-line sequential SVM training, evaluated on the UCI
Diabetes dataset for a Gaussian kernel. (a) Discrepancy in KKT margin conditions (9) after single
pass (with mean bias centering) through the training set. (b) Discrepancy between on-line and
batch (true) decision functions evaluated over training and test sets. (c and d) Same, after five
on-line passes through the training set in random order.

in the bias term b is omitted from the diagram. The architecture for training shares

the majority of units with those needed in run-time to arrive at the classification

y from the decision function f(X). Dedicated units for implementing training in-

clude the cell computing gc from f(Xc), and local provisions for adaptation of αc

according to (11). The shared resources allow to efficiently interleave run-time and

training modes of operation on the same integrated platform.

Physical memory constraints in the kernel processor hardware limit the number

of support vectors that can be stored and processed in the array. Under ideal condi-

tions, the number of support vectors is relatively small to enable integrated storage



May 5, 2003 11:51 WSPC/115-IJPRAI 00247

Silicon SVM with On-Line Learning 393

Xc yc

KERNEL PROCESSOR

Xm ym

+

+

X1 y1

+

XM yM

αm

+

yMK(XM,Xc)

αM

+

y1K(X1,Xc)

α1

+

ymK(Xm,Xc)

f(Xc)

gc>0

y

-1

b

(a)

Xc yc

Xc yc

KERNEL PROCESSOR

Xm ym

ycK(Xc,Xc)
+

+

X1 y1

αc

+

XM yM

αm

+

yMK(XM,Xc)

αM

+

y1K(X1,Xc)

α1

+

ymK(Xm,Xc)

f(Xc)

gc<0

y

-1

b

(b)

Fig. 2. SVM learning parallel architecture implementing the on-line coefficient update rule (11).
(a) A candidate training vector Xc and label yc are presented. Kernels between Xc and the
support vectors Xm evaluated by the array processor are linearly combined and weighted with
stored coefficients αm, to produce decision function f(Xc) and output y according to (2) and (1).
If the margin variable gc = ycf(Xc) − 1 is positive, the training sample has zero coefficient and
is discarded. (b) If the margin variable gc is negative, Xc becomes a support vector and is stored
in a vacant memory location in the kernel array. The coefficient αc is assigned a unique value
satisfying KKT conditions (9) on the resulting value of gc.

of all support vectors. For tasks with significant class overlap and noise, the num-

ber of error vectors can be large enough to exhaust available in-processor memory

resources. Under such conditions a scheduling procedure is needed to maintain a

fixed number of support vectors as limited by the memory. One possible schedule

is a first-in-first-out procedure, which replaces the oldest support vector with the
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new assignment, provided that the change results in lower global objective func-

tion H . Such a scheduling procedure enables the learning architecture to adapt its

parameters under influence of environmental changes (drifting concepts).14 Other

possible schedules include selective removal of support vectors with smallest leave-

one-out error.

2.7. SVM computational resources requirements

Sections 2.1 and 2.5 established that both run-time classification and on-line train-

ing can be accommodated in essentially the same architecture to compute the

decision function (2). For general kernels described in Sec. 2.2, the computa-

tion of the inner products takes the form of matrix-vector multiplication (MVM),
∑N

n=1 Xmn Xn; m = 1, . . .M , where M is the number of support vectors. For large

scale problems as the ones of interest here, the dimensions of the matrix M × N

are excessive for real-time implementation even on a high-end processor.

As a point of reference, consider the pedestrian and face detection task in Ref. 19,

for which the feature vector length N is 1326 wavelets per instance, and the number

of support vectors M is in excess of 4000. To cover the visual field over the entire

scanned image at reasonable resolution (500 image window instances through a

variable resolution search method) at video rate (30 frames per second), a com-

putational throughput of 75× 109 multiply-and-accumulate operations per second,

is needed. The computational requirement can be relaxed through simplifying and

further optimizing the SVM architecture for real-time operation, but at the expense

of classification performance.17,19

3. Kerneltron: Massively Parallel VLSI Kernel Machine

The Kerneltron offers the computational power required for large-scale problems in

high dimensions as just described. The general architecture is described next.

3.1. Core recognition VLSI processor

At the core of the system is a recognition engine, which very efficiently implements

kernel-based algorithms, such as support vector machines, for general pattern detec-

tion and classification. The implementation focuses on inner-product computation

in a parallel architecture for both run-time and training modes of operation.

As discussed in Sec. 2.5, both SVM classification and on-line learning are most

efficiently implemented on the same chip, in a scalable VLSI architecture illustrated

schematically in Fig. 3. The diagram is the floorplan of the Kerneltron, with the

support vector matrix projected as a 2-D array of cells, and input and output

vector components crossing in perpendicular directions alternating from one stage

to the next. The architecture maintains low input/output data rate. Digital inputs

are fed into the processor through a properly sized serial/parallel converter shift

register.
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Fig. 3. The architecture of the core recognition processor for support vector machine classification
and on-line training. Communication with outside modules is through a serial digital input/output
interface for maximal flexibility and programmability, while the core internal computations are
parallel and analog for optimal efficiency.

The classification decision is obtained in digital domain by thresholding the

weighted sum of kernels. The kernels are obtained by mapping the inner-products

X · Xm through the function k(·). During on-line learning, the α coefficient of a

newly presented data point is adapted based on the value of the weighted sum of

kernels. Adaptive assignment of the coefficient αm is a task of low computational

complexity that can be delegated off-chip, using the inner products X·Xm computed

efficiently on the array.

3.2. Mixed-signal computation

Computing inner-products between an input vector X and template vectors Xm

in parallel reduces to the task of matrix-vector multiplication (MVM). We will

henceforth consider the general MVM setting

Ym =

N−1
∑

n=0

WmnXn (15)

with N -dimensional input vector Xn, M -dimensional output vector Ym, and M×N

matrix of coefficients Wmn. Rows of matrix elements Wmn denote support vectors

Xmn, and the outputs Ym transform to kernels through activation of k(·) in (3)

or (4).
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3.2.1. Internally analog, externally digital computation

The approach combines the computational efficiency of analog array processing

with the precision of digital processing and the convenience of a programmable and

reconfigurable digital interface.

The digital representation is embedded in the analog array architecture, with

matrix elements stored locally in bit-parallel form

Wmn =
I−1
∑

i=0

2−i−1w(i)
mn (16)

and inputs presented in bit-serial fashion

Xn =

J−1
∑

j=0

γjx
(j)
n (17)

where the coefficients γj are assumed in radix two, depending on the form of input

encoding used. The MVM task (15) then decomposes into

Ym =

N−1
∑

n=0

WmnXn =

I−1
∑

i=0

2−i−1Y (i)
m (18)

with MVM partials

Ym
(i) =

J−1
∑

j=0

γjY
(i,j)
m (19)

and

Ym
(i,j) =

N−1
∑

n=0

w(i)
mnx(j)

n . (20)

The binary–binary partial products (20) are conveniently computed and accumu-

lated, with zero latency, using an analog MVM array as described next.

3.2.2. Oversampling mixed-signal array processing

The unit cell in the analog array combines a CID (charge injection device10)

computational element16,20 with a DRAM storage element.7 The cell stores one

bit of a matrix element wmn
(i), performs a one-quadrant binary–unary (or binary–

binary) multiplication of wmn
(i) and xn

(j) in (20), and accumulates the result across

cells with common m and i indices. An array of cells thus performs (unsigned)

binary–unary multiplication (20) of matrix wmn
(i) and vector xn

(j) yielding Ym
(i,j),

for values of i in parallel across the array, and values of j in sequence over time. A

256 × 128 array prototype using CID/DRAM cells is shown in Fig. 4.

The MVM partials (20) are quantized by a bank of oversampling analog-to-

digital converters (ADCs), and the results accumulated in the digital domain ac-

cording to (19) and (18). The precision of computation is limited by the resolution
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Fig. 4. Micrograph of the Kerneltron prototype, containing an array of 256× 128 computational
cells with embedded memory, and a row-parallel bank of 128 algorithmic ∆Σ ADCs. Die size is
3 mm × 3 mm in 0.5 µm CMOS technology.

of the ADCs digitizing the analog array outputs. The conventional delta–sigma

(∆Σ) ADC design paradigm allows to reduce requirements on precision of analog

circuits to attain high resolution of conversion, at the expense of bandwidth. In the

presented architecture a high conversion rate is maintained by combining delta–

sigma analog-to-digital conversion with oversampled encoding of the digital inputs,

where the delta–sigma modulator integrates the partial multiply-and-accumulate

outputs (20) from the analog array according to (19).

Figure 5 depicts one row of matrix elements Wmn in the ∆Σ oversampling

architecture, encoded in I = 4 bit-parallel rows of CID/DRAM cells. One bit of

a unary-coded input vector is presented each clock cycle, taking J clock cycles to

complete a full computational cycle (15). The data flow is illustrated for a digital

input series xn
(j) of J = 16 unary bits.

Over J clock cycles, the oversampling ADC integrates the partial products (20),

producing a decimated output

Q(i)
m ≈

J−1
∑

j=0

γjY
(i,j)
m (21)

where γj = 1 for unary coding of inputs. Decimation for a first-order delta–sigma

modulator is achieved using a binary counter. Higher precision is obtained in the

same number of cycles J by using a residue resampling extended counting scheme.15

Additional gains in precision can be obtained by exploiting binomial statistics
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Fig. 5. Block diagram of one row of the matrix with binary encoded elements w(i)
mn, for a single

m and I = 4. Data flow of bit-serial unary encoded inputs x(j)
n and corresponding partial product

outputs Y (i,j)
m, with J = 16 bits. The full product for a single row Y (i)

m is accumulated and
quantized by a delta–sigma ADC. The final product is constructed in the digital domain according
to 18.

of binary terms in the analog summation (20).8 In the present scheme, this would

entail stochastic encoding of the digital inputs prior to unary oversampled encoding.

4. Results and Discussion

4.1. Measured performance

A prototype Kerneltron was integrated on a 3×3 mm2 die and fabricated in 0.5 µm

CMOS technology. The chip contains an array of 256× 128 CID/DRAM cells, and

a row-parallel bank of 128 algorithmic ∆Σ ADCs. Figure 4 depicts the micrograph

and system floorplan of the chip.

The processor interfaces externally in digital format. Two separate shift registers

load the templates (support vectors) along odd and even columns of the DRAM

array. Integrated refresh circuitry periodically updates the charge stored in the array

to compensate for leakage. Vertical bit lines extend across the array, with two rows of

sense amplifiers at the top and bottom of the array. The refresh alternates between

even and odd columns, with separate select lines. Stored charge corresponding to

matrix element values can also be read and shifted out from the chip for test
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Table 1. Measured performance.

Technology 0.5 µm CMOS
Area 3 mm × 3 mm

Power 5.9 mW
Supply Voltage 5 V

Dimensions 256 inputs × 128 templates
Throughput 6.5 GMACS

Output Resolution 8-bit

purposes. All of the supporting digital clocks and control signals are generated on-

chip. The bank of ∆Σ ADCs dissipates 2.6 mW yielding a combined conversion

rate of 12.8 Msamples/s. Table 1 summarizes the measured performance.

4.2. On-line learning

Experiments evaluating the performance of on-line sequential training on a sim-

ple visual object detection task are illustrated in Fig. 6. Inputs to the Kerneltron

consists of blocks of 16 × 16 pixels of image data, quantized at 4-bit intensity

resolution (in the range {−8, . . . , +7}). The Lena sample image is divided in train-

ing and test sets as shown in Fig. 6(a), and a region around the left eye shown in the

boxed inset defines the positive training labels. The matched filter response using

the eye template over the image field is given in Fig. 6(b), responding strongly to

the location of both the left (training) and right (test) eyes, but also to spurious

other locations in the image. Offline (batch) SVM training with a Gaussian kernel at

floating-point precision (variance σ2 = 1024; C = 1) enhances the response to both

eyes and suppresses other features in the training and test portions of the image,

shown in Fig. 6(c). The trained classifier contains 80 support vectors including 55

margin vectors and 25 error vectors. The effect of on-line sequential training with

mean bias centering at 8-bit fixed-point inner-product resolution on the Kerneltron

is illustrated in Fig. 6(d). The resulting classifier is sparser with 77 support vectors,

of which 55 margin vectors and 22 are error vectors. The peak number of support

vectors in the course of on-line training is 122.

The implementation of the Gaussian kernel assumes the inner-product decom-

position (5) where the input term |X|2 is obtained by storing the input vector in a

dedicated template row location of the array prior to kernel evaluation. Exponen-

tiation in the Gaussian kernel is circumvented using Euler’s approximation

k(x) = exp(−
x2

2σ2
) ≈

(

1−
1

ν

x2

2σ2

)ν

(22)

for large ν, where the approximation holds for x2 ≤ ν2σ2. A value ν = 3 is used

to reduce the number of multiplications required while suitably approximating the

exponential.

Effects of quantization and imprecision at various levels are barely visible in

Fig. 6(d).
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(a) (b)

(c) (d)

Fig. 6. Effects of on-line sequential training and finite precision on SVM adaptive visual object
detection. (a) Lena image partitioned in training and test data. Inset box indicates positive training
examples for eye detection task. (b) Matched filter response using left eye template. (c) Baseline
batch-mode SVM training and test at floating-point kernel precision. (d) On-line sequential SVM
training and test on Kerneltron at 8-bit inner-product precision.

4.3. Applications

The Kerneltron offers an efficient adaptive platform for real-time object detection

and recognition, particularly in artificial vision and human–computer interfaces.

Applications extend from SVMs to any pattern recognition architecture that relies

on computing a kernel distance between an input and a large set of templates in

large dimensions.

Besides throughput, power dissipation is a main concern in portable and mobile

applications. Power efficiency can be traded for speed, and a reduced implemen-

tation of dimensions similar to the version of the pedestrian classifier running on

a Pentium PC (27 input features)17,19 could be integrated on a chip running at

100 µW of power, easily supported with a hearing aid type battery for a lifetime of

several weeks.
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One low-power application that could benefit a large group of users is a nav-

igational aid for visually impaired people. OpenEyes, a system developed for this

purpose12 currently runs a classifier in software on a Pentium PC. The software

solution offers great flexibility to the user and developer, but limits the mobility of

the user. The Kerneltron offers the prospect of a low-weight, low-profile alternative.

With integrated learning capabilities, the Kerneltron also powers the user with the

ability to train the system on-line for automated recognition of custom-specified

objects or people.

5. Conclusions

A massively parallel architecture implementing Support Vector Machine classifi-

cation and training in very high dimensions has been presented. Inner-product

based kernels are chosen for their generality and simplicity of implementation.

The learning problem is formulated as a simple on-line sequential update rule

that satisfies the margin KKT condition on the new point, while adjusting the

bias term to approximately satisfy the equality constraint and the remaining

margin KKT conditions. On-line training is implemented utilizing essentially the

same computational resources as the classifier in run-time. The architecture lends

itself to efficient mixed-signal implementation on the Kerneltron, a massively

parallel support vector machine in silicon for large-scale kernel-based visual pat-

tern recognition.
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