Efficient Emulation of Large-Scale Neuronal Networks

BENG/BGGN 260 Neurodynamics

University of California, San Diego

Week 6
Reading Material

Figure 1: Main structures of the ED-LUT simulator

Input spikes are stored in an input queue and are sequentially inserted into the spike heap. The network definition process produces a neuron list and an interconnection list, which are consulted by the simulation engine. Event processing is done by accessing the neuron characterization tables to retrieve updated neuronal states and forecast spike ring times.

Ros et al, 2006
While $t_{\text{sim}} < t_{\text{end}}$
{
 Extract the event with a shortest latency in the spike heap

 If it is a firing event
 If it is still a valid event and the neuron is not under a refractory period
 Update the neuron state: V_m, g_{exc}, g_{inh} to the postfiring state.
 Prevent this neuron from firing during the refractory period.
 (Once this is done, update the neuron time label to $t_{\text{sim}} + t_{\text{refrac}}$).
 Predict if the source neuron will fire again with the current neuron state.
 If the neuron will fire:
 Insert a new firing event into the spike heap.
 Insert the propagated event with the shortest latency (looking at the output connection list).

 If it is a propagated event
 Update the target neuron state: V_m, g_{exc}, g_{inh} looking at the characterization tables, before the event is computed.
 Modify the conductances (g_{exc}, g_{inh}) using the connection weight ($G_{\text{exc},i}$, $G_{\text{inh},i}$) for the new spike.
 Update the neuron time label to t_{sim}.
 Predict if the target neuron will fire.
 If it fires:
 Insert the firing event into the spike heap with the predicted time.
 Insert only the next propagated event with the next shortest latency (looking at the output connection delay table).

}\n
Figure 2: Simulation algorithm

This pseudocode describes the simulation engine. It processes all the events of the spike heap in chronological order.

Figure 3: Equivalent electrical circuit of a model neuron

g_{exc} and g_{inh} are the excitatory and inhibitory synaptic conductances, while g_{rest} is the resting conductance, which returns the membrane potential to its resting state (E_{rest}) in the absence of input stimuli.

Ros et al., 2006
Exponential Postsynaptic Conductance Model

Figure 4. A postsynaptic neuron receives two consecutive input spikes

The evolution of the synaptic conductance is the middle plot. The two excitatory postsynaptic potentials (EPSPs) caused by the two input spikes are shown in the bottom plot. In the solid line plots, the synaptic conductance transient is represented by a double-exponential expression (one exponential for the rising phase, one for the decay phase). In the dashed line plot, the synaptic conductance is approximated by a single-exponential expression. The EPSPs produced with the different conductance waveforms are almost identical.

\[g_{\text{exc}}(t) = \begin{cases} 0, & t < t_0 \\ G_{\text{exc}} \cdot e^{-(t-t_0)/\tau_{\text{exc}}}, & t \geq t_0 \end{cases} \]

\[g_{\text{inh}}(t) = \begin{cases} 0, & t < t_0 \\ G_{\text{inh}} \cdot e^{-(t-t_0)/\tau_{\text{inh}}}, & t \geq t_0 \end{cases} \]

(4.1)

Single decaying exponential model for synaptic conductance is adequate for accurate emulation of postsynaptic membrane dynamics.

Ros et al, 2006
Event-Driven, Table-Based Estimation of Postsynaptic Action Potential Timing

- For single-exponential conductance dynamics, arrival of a new presynaptic spiking ‘event’ amounts to a one-time increment in the conductance:

\[g_{\text{exc}}(t) = G_{\text{exc},j} + e^{-(t_{\text{currentspike}} - t_{\text{previousspike}})/\tau_{\text{exc}}} g_{\text{exc,previous}}(T) \] (4.2)

\[g_{\text{inh}}(t) = G_{\text{inh},j} + e^{-(t_{\text{currentspike}} - t_{\text{previousspike}})/\tau_{\text{inh}}} g_{\text{inh,previous}}(T) \]

- Postsynaptic time-to-firing (in the absence of other ‘events’) is then tabulated for different values of initial excitatory and inhibitory conductance:

\[
C_m \frac{dV_m}{dt} = g_{\text{exc}}(t_0)e^{-(t-t_0)/\tau_{\text{exc}}} (E_{\text{exc}} - V_m) \\
+ g_{\text{inh}}(t_0)e^{-(t-t_0)/\tau_{\text{inh}}} (E_{\text{inh}} - V_m) + G_{\text{rest}}(E_{\text{rest}} - V_m) \] (4.3)

- In the event of an earlier other ‘event’, the conductance values are updated according to (4.2).
Figure 9: Single neuron simulation

Excitatory and inhibitory spikes are indicated on the upper plots. Excitatory and inhibitory conductance transients are plotted in the middle plots. The bottom plot is a comparison between the neural model simulated with iterative numerical calculation (continuous trace) and the event-driven scheme, in which the membrane potential is updated only when an input spike is received (marked with an x). Ros et al, 2006
The table-based, event-driven approach can be extended to multiple excitatory and inhibitory synapse types with different synaptic strengths, time constants, and reversal potentials.

- Each additional and distinct time constant requires an additional variable dimension in the table lookup. Additional synapse types with time constant identical to another existing synapse type do not incur additional variable dimensions, independent of synaptic strength or reversal potential.

- The complexity of table lookup is exponential in the number of variable dimensions, and hence does not scale to large numbers of different time constants in the synaptic dynamics.

In the case of a single synaptic time constant, a simple and exact closed-form expression for the postsynaptic time-to-firing replaces the table lookup for efficient implementation [Rudolph and Destexhe, 2006].