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Abstract 5 

Analysis of brain activity reveals the presence of synchronous oscillations 6 
over a range of frequencies. These oscillations can be observed using 7 
electro-neurological measurements such as electroencephalogram (EEG),  8 
magnetoencephalogram (MEG) or electrocorticogram (ECoG) . Further, 9 
these rhythms can traverse different connected parts of the brain forming a 10 
“system of rhythms”. These systems are analyzed in this paper using a 11 
lumped-parameter, interconnected, neural mass models. This model allows 12 
the analysis of the dynamics of the neural population in the frontal cortex 13 
and their synapses using a few state variables. It is assumed here that the 14 
neurons share the inputs and synchronizes their activity. The present work 15 
is motivated by a recent paper by Bhattacharya et al who have proposed an 16 
adaptation of Ursino’s neural mass model for the study of the changes in 17 
alpha rhythms during the course of Alzheimer's disease. In that work, the 18 
synaptic organization and connectivity in the lumped thalmo-cortico-19 
thalmic model was modified using experimental data. The authors were able 20 
to reproduce the slowing of alpha rhythms (8-12 Hz) and decrease in power 21 
of these rhythms associated with the Alzheimer's disease. Using this 22 
research as the basis, the present work employs a pathophysiologic 23 
understanding of traumatic brain injury to create a computational model of 24 
traumatic brain injury that recreates the multimodal 25 
electroencephalographic changes observed to occur with mild, moderate, 26 
and severe traumatic brain injury. The focus is on recreating the observed 27 
changes in the alpha and gamma rhythms (30-100Hz) due to traumatic brain 28 
injury. Eight coupled neural mass models are used to represent the frontal 29 
cortex. Numerical simulations are conducted using a well-known software 30 
package. It is shown that the present model accurately reproduces the power 31 
spectral density of the normal frontal cortex under white-noise excitation 32 
conditions. Three degrees of traumatic brain injuries are then modeled by 33 
decreasing the connection strengths in the neural mass model. A comparison 34 
of the power spectral densities of the outputs of the normal and injured 35 
neural mass models indicates that the present model is capable to 36 
reproducing clinically-observed changes due to traumatic brain injuries.  37 

 38 

1 Traumatic Brain Injury  39 

1 .1  B a ckg ro und  40 

Traumatic brain injury (TBI) is defined as an alteration in brain function or other evidence of 41 
brain pathology caused by an external force. (McAllister, 2011)TBI is the leading cause of 42 
death in individuals less than 35yrs old. It is a leading cause of neuropsychological  43 
dysfunction and disability. Nearly 500,000 people a year in the United States are 44 
hospitalized with head trauma. Of these, approximately 70,000 suffer from a long-term 45 



disability and 2,000 remain in a persistent vegetative state, alive but unconscious. The 46 
annual cost of treatment for TBI in the United States is estimated to be approximately $25 47 
Billion. (Bruns J, 2003) TB is the leading injury for veterans returning from wars in Iraq and 48 
Afghanistan. Since October 2001, over 1.6 million American service members have 49 
deployed, between 5-35% have had a concussion. It is estimated that 80% of those injuries 50 
are due to blast exposure. Although modern helmet technology has enabled protection from 51 
penetrating projectiles that cause focal traumatic injury, it cannot protect against TBI caused 52 
by blast waves arising from explosions in the proximity. During blast exposure, large forces 53 
can be imparted to entire underlying neural tissues causing both focal and diffuse injuries. 54 
(Rigg JL, 2011) 55 

The severity of traumatic brain injury is currently graded based upon the Glascow Coma 56 
Scale, it is a15-point scale based upon eye opening, verbal and motor responsiveness to 57 
requested commands. Severe traumatic injury (GCS 3-8) results in unconsciousness and is 58 
seen after high-energy impacts, such as penetrating gunshot wounds. Moderate injury (GCS 59 
9-12) from moderate energy impacts, such as blast injuries; result in severe impairment of 60 
consciousness causing disorientation or confusion. Mild injury (GCS 13 -15) from low 61 
energy impacts, such as a football tackle, can result in mild confusion and disorientation. 62 
(Teasdale G, 1974) All injuries have short-term and long-term consequences and constitute a 63 
spectrum of physical injuries that damage different neural elements to various degrees. 64 
 65 

1 .2  Cl in ica l  Co nse quence s  o f  TB I  66 

Severe traumatic brain injury often requires surgical intervention to decompress the brain 67 
acutely, placement of a surgically implanted monitor to measure intracranial pressure 68 
(Rabenstein, 2008) and sometimes implanting a cerebral microdialysis device for 69 
neurochemical monitoring (Tisdall MM, 2006). Moderate TBI requires hospitalization in an 70 
intensive care setting and occasionally requires invasive intracranial monitoring.  Patients 71 
with mild TBI are often seen in the emergency room setting or by the primary care 72 
physicians and frequently return home directly after the injury. They usually do not require 73 
inpatient hospitalization and no consistent medical treatment for the consequences of mild 74 
TBI are employed currently. (Comper P, 2005)  75 

Immediately after an impact injury to the cranium, athletes and soldiers can be significantly 76 
disabled. Fine motor skills and balance are acutely affected, creating a situation where the 77 
patient can have severe impairments of motor and executive judgment that can expose 78 
themselves and others to further harm. Long-term consequences include pain syndromes, 79 
such as chronic headaches, nausea and visual disturbances. Patients may also experience 80 
difficulties with cognitive tasks, such as learning disability, difficulty with concentration, 81 
and short-term memory loss.  Further, long-term neuropsychological disabilities from TBI 82 
include mood instability and derangements of perception. (Hogue C, 2008).  83 

 84 

1 .3   Pa tho phy s io lo g y  of  Tra u ma t ic  B ra in  Injury  85 

As stated previously TBI can broadly be categorized as penetrating or non-penetrating 86 
injuries. Non-penetrating injuries occur when the brain moves inside the skull striking the 87 
inner surface of the skull, movement of the brain against the rigid bone causes mostly focal 88 
injuries to the frontal and temporal poles of both hemispheres. (Bruns J, 2003)  89 

Non-penetrating injuries include those caused by inertial forces: linear translation or rotation 90 
combine to produce angular acceleration and deceleration that cause shearing and normal 91 
forces that damage large numbers of neural masses. The forces are greatest in areas that 92 
experience the highest angular acceleration (superficial>deep and anterior>posterior). 93 
Shearing forces are maximal between tissues of different densities such as the interface 94 
between the gray and white matter. At a mesoscopic scale (1mm range), high velocity and 95 
long-duration acceleration are maximal on axonal projections and small blood vessels 96 
causing shearing of axons and disconnections of synapses. 97 

The cellular response to TBI has been investigated in animal models that involve studying 98 
brain tissue after a mass has impacted a surgically opened area of brain (Cernak, 2005) It is 99 
hypothesized that a mechanical strain and tearing results in mechano-poration of the cell 100 
membrane and axon, causing a massive release of intracellular contents including excitatory 101 



neurotransmitters and intracellular ions. The most readily observed changes after traumatic 102 
injury include the release glutamate and calcium ion into the extracellular space. 103 
(McAllister, 2011) 104 

Cells that are entirely disrupted undergo necrosis in the minutes after injury and trigger an 105 
inflammatory response. In surrounding cells with damaged plasma membranes, the influx of 106 
     into the cell sets off an intracellular cascade that leads to cytotoxic damage. In certain 107 
cases, cells that are relatively less severely injured can undergo programmed cell death in the 108 
hours to weeks after the injury. However, the effect of mild injury has not been well 109 
described. The excessive release of other neurotransmitters can further electrophysiological 110 
derangements after trauma. Acetylcholine, may amplify the destruction of excitatory amino 111 
acids. Serotonin elevations can decrease cerebral glucose use and lead to further metabolic 112 
derangements. (McAllister, 2011)   113 
 114 

1 .4   B io ma r kers  o f  TB I  115 

Current biomarkers to predict the outcome of TBI depend on clinical assessments obtained at 116 
the time of injury; specifically the Glascow Coma Scale mentioned in an earlier section. 117 
Other tests of concussion consist of neuropsychological examinations such as the ImPACT 118 
(impacttest.com) (McClincy M, 2006) or the ANAM military TBI assessment (Irvins BJ, 119 
2009). None of these clinically based indicators are very accurate at predicting neurological 120 
deterioration, nor are reliable to aid in prognosis or treatment response.  121 

Traditional imaging techniques, such as CT and MRI scans, can visualize gross changes in 122 
neuroanatomical structure such as skull fractures and brain hemorrhages. However, 123 
individual cellular injury cannot be easily discerned from these images, much less the 124 
damage to the underlying neural networks that are the cause of the spectrum of clinical 125 
presentations of traumatic brain injury. Some functional magnetic resonance imaging (fMRI) 126 
studies into TBI have been conducted but are expensive and not easily useable to monitor 127 
function continuously (Friedman SD, 1999)  128 

Since the brain is an electro-dynamical system, it creates electric fields indicating internal 129 
activity that may be recorded at the scalp by way of electroencephalography (EEG). Hans 130 
Berger first discussed the use of EEG in humans. (Berger, 1969) EEG can be used to monitor 131 
the electrical activity of the normal and diseased brain in a variety of conditions. EEG has 132 
been used after moderate and severe traumatic brain injury to monitor for subclinical 133 
seizures and is being actively pursued as a valuable measure of the treatment response in 134 
acutely injured patients.  Due the fact that it is a passive sensor, EEG can be used 135 
continuously, is safe, non-invasive and relatively inexpensive. Our aim is to design a 136 
computational model that can utilize EEG to monitor the electro-dynamic changes that occur 137 
after TBI as a biomarker of disease progression, treatment response, and prognosis.   138 

 139 

2 Computational  models  of  TBI  140 

Previous simulation endeavors into TBI have focused on finite element modeling of mechanical 141 

stress and strain relationships to describe the deformation of neural structures after various head 142 

impacts (King AI, 1995). These modeling efforts did not consider the changes to the underlying 143 

electrodynamics that occurs after TBI. Computational modeling of TBI has also included 144 

modeling changes to cognitive processes after TBI in an effort to describe the alterations in 145 

cognitive processing by varying the values of different judgment functions. There have been 146 

multiple efforts to model the neurophysiological changes that occur with epilepsy syndromes 147 

using computational models (Knowles, 1985). 148 

There are no current computational models of electrodynamics of the neural systems under various 149 
traumatic injury conditions. This paper formulates such an approach to model the electrodynamics 150 
of brain injuries based on lumped neural mass models. The objective is to create an 151 
electrodynamic model that captures the macroscopic response, at the level of EEG recordings, of 152 
the brain to various injury conditions. Following previous research efforts by Ursino (Ursino M, 153 
2010) and Bhattacharya (Bhattacharya BS, 2011) the present study focuses on the frequency 154 
domain behavior of the brain electrodynamics after TBI. 155 

 156 



3 Neural  Mass Models  157 

 Various mathematical models of the brain have been proposed in the past several years. 158 
These range from single spiking neuron models capturing membrane dynamics and chemical 159 
transport phenomena, to population models that capture the average behavior of densely connected 160 
mass of neurons. Although incapable of predicting the responses of individual neurons, these latter 161 
models are useful in characterizing the macroscopic electrodynamics of the brain, observable from 162 
external measurements such as the EEG. 163 

Neural Mass Models (NMM) are used in the present study for modeling populations of neurons in 164 
the cortex. Since the introduction of the NMMs by Wilson and Cowan(Wilson HR, 1972) they 165 
have been widely used in a range of modeling efforts. Briefly, in these models, a population of 166 
neurons is assumed to have a shared input and output connectivity. Further, spiking activity is 167 
modeled for a coalesced population soma rather than individual neurons. The underlying 168 
assumption is that as long as the population neurons are connected to each other (either directly or 169 
via local interneurons) the spatial interactions can be neglected in favor of temporal dynamics of 170 
the aggregate population. This approach is justified as there is a high degree of local redundancy 171 
in cortical tissues. In other words, many neighboring populations exhibit similar response to 172 
identical stimuli. Thus, rather than attempting to duplicate a higher level function through detailed 173 
model of individual neurons and their connectivity, NMM’s offer a macroscopic view of the 174 
temporal dynamics of populations of neurons. This macroscopic view can be useful in analysis of 175 
higher level global processes such as pattern recognition. Further, while individual neuron’s 176 
activity may appear random, a macroscopic view of the neural population may yield precise 177 
interactions over larger scales. The NMM representation is mathematically tractable and 178 
parsimonious, since only a few variables are needed in the model to capture the dynamics of a 179 
population of neurons. 180 

The original NMMs modeled both excitatory and inhibitory neural sub-populations. These were 181 
adapted to reproduce various rhythms associated with the neural activity of the brain using 182 
feedback loops amongst various populations. For example, Lopes da Silva, et. al. have modeled 183 
the alpha rhythms and other rhythms (Lopes da Silva FH, 1976). Recently, Bhattacharya 184 
(Bhattacharya BS, 2011) used a neural mass model to approximate the effects of Alzheimer’s 185 
disease as a global loss of neurons. 186 

In the present project, two different NMMs are simulated following previous research. The first 187 
model is based on a paper by Jensen and Rit (Jansen BH, 1995)that uses biologically feasible 188 
values to simulate connectivity between two cortical columns1. The second model, is from Ursino 189 
et. al (Ursino M, 2010) this work is one of the most sophisticated models available and allows for 190 
simultaneous alpha and gamma rhythm generation. In the next sections, we describe the details of 191 
these models and their application to TBI. 192 

 193 

4 Model  1:  Jensen and Rit  Model  for a Cortical  Column  194 

                                                           
11 This work is highly cited, and is reproducible in comparison to the models employed in 
some newer papers that were examined at the start of the present project. 



 195 

Figure 1. The Jensen-Rit Neural Mass Model 196 

Figure 2 shows a NMM for a cortical column used for generation of alpha rhythm. The model uses 197 
3 neural sub-populations each with a post-synaptic potential (PSP) block that converts pulse 198 
density into potential and a sigmoid block that converts potential into pulse density. The constants 199 
C1, C2, C3, and C4 are the connectivity constants that define synaptic connectivity of the 200 
interneurons between different subpopulations. The PSP blocks hi (inhibitory interneuron) and he 201 
(excitatory interneurons and pyramidal neurons) represent linear transformations that are defined 202 
by the following impulse responses: 203 

                               

                               

Here, A and B are the gain, and a and b are the lumped representation of the sum of reciprocals of 204 
the time constants of the associated delays.   205 

The sigmoidal functions in the model are defined as  206 

                           

Here, 2e0 is the maximum firing rate, v0 is the firing threshold and r determines the steepness of 207 
the sigmoid. The model also accounts for input from other cortical areas. These are modeled as 208 
white noise with a uniformly distributed amplification factor. 209 

A Simulink® implementation of the Jensen-Rit model for a cortical column in the visual cortex2 210 
is given in Figure 3. Simulation of the visual cortex was chosen for this initial implementation due 211 
to the fact the frontal lobe and occipital lobes are both vulnerable in TBI and visual disturbances 212 
are common after TBI (Hardman JM, 2001) The alpha frequency is prominent in the occipital lobe 213 
when the eyes are closed and the subject is at rest. (Romei V, 2010)  214 

                                                           
2 The model parameters change for other cortex. 



 215 

Figure 4. Simulink Block Diagram of the Jensen-Rit Visual Cortex Model 216 

 217 

The potential of the neural mass soma is plotted in Figure 3. Notice that the temporal evolution of 218 
the membrane potential exhibits oscillations. 219 

 220 
Figure 5. Temporal Evolution of the Membrane Potential in the Jason-Rit Visual Cortex Model 221 

Figure 3 Oscillations in membrane potential of pyramidal cell soma 222 

The normalized power spectral density (i.e. PSD(f)/∑PSD(f)) of the membrane potential history is 223 
given in Figure 6. 224 
 225 
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 226 

Figure 6. Normalized Power Spectral Density of the Jensen-Rit Visual Cortex Model 227 
 228 

Figure 6 shows that the alpha band frequencies (8-12Hz) are the dominant frequencies in the 229 
visual cortex model and therefore accurately simulates an awake, resting patient with his eyes 230 
closed. 231 

 232 

4 .1  M o de l ing  a  mi ld  TB I  us ing  J ense n -Ri t  mo de l   233 

During a mild TBI, the potassium and calcium influx cause a temporary increase in the 234 
spiking activity. This is modeled in the present work by reducing the firing threshold in the 235 
sigmoid function for the pyramidal neurons. Since layer V of the cortical mantle is most at 236 
risk during mild ischemic injuries, we assume that the pyramidal neurons are most likely to 237 
sustain damage during mild non-penetrating TBI. (Kandel ER, 2000)  238 

The effect of lowering of the firing threshold of pyramidal neurons in mild TBI is illustrated 239 
in Figure 7. 240 

 241 

Figure 7. The Effect of Lowered Firing Threshold of Pyramidal Neurons in Mild TBI 242 

The following observations can be made from Figure 7. 243 

 

alpha 
band 

 

alpha 
band 



Overall contribution of alpha band to PSD reduces monotonically with the threshold. The 244 
peak observed in the alpha band is lowered in magnitude as the threshold potential is 245 
reduced. The PSD is more dispersed. Although a slight decrease in threshold appears to 246 
cause the peak in the alpha band to move to the right (i.e. towards higher frequencies), it can 247 
be observed that further decrease moves the peak towards the left.  248 

Thus, noting the above patterns, it may be possible to design appropriate EEG markers for 249 
mild TBI. A good marker for TBI may use the total contribution of alpha band as well as the 250 
location of peaks in the power spectrum to determine the magnitude of a TBI.  251 

 252 

4 .2  M o de l ing  mo dera te  T B I  253 

A moderate TBI can be modeled as a loss in synaptic connectivity due to injuries to small 254 
focal areas of the brain. Figure 8 shows that reduced synaptic connectivity (20% loss) causes 255 
the peak band to shift from alpha (8-12Hz) to lower frequency delta rhythms (0.1-4Hz). 256 

 257 

Figure 8. Shift of Power from alpha (8-12Hz) to Lower Frequency Delta Rhythms (0.1-4Hz) 258 
due to Reduced Synaptic Connectivity in Moderate TBI 259 

Next, a loss of synaptic connectivity to only the pyramidal neurons is evaluated. A mild TBI 260 
is also included in the model by reducing the threshold potential V0 to 4 mv (from 6 mv). 261 
Thus, a combination of injuries (dashed red) and a possible means of recovery (so lid red) are 262 
both simulated. Notice how the permanent injury of 20% of the neurons (green in Figure 8) 263 
closely resembles the temporary injury (dashed red in Figure 9). Thus, temporal progression 264 
of EEG rhythms can reveal interesting information on TBI and subsequent recovery.  265 

 266 

Figure 9. PSD of the NMM with Moderate TBI 267 

4 .3  Co nnec ted  Co rt i ca l  Co lu mns  268 

As shown in the schematic diagram below, the Jensen and Rit model also allows for 269 
connecting multiple cortical columns using attenuation and delay.  270 



 271 
 272 

Figure 10 Two Connected Columns using Jensen and Rit model 273 
 274 

Since, the primary focus of the present study is on a localized injury, two neighboring 275 
cortical columns from the same (occipital) cortex were connected together.  276 
 277 

 278 

Figure 11. PSD of two connected cortical columns 279 
 280 

Figure 11 shows the PSD of two connected cortical columns from the visual cortex (see (Jansen 281 
BH, 1995) for details). The “normal” scenario PSD is similar to that shown earlier for the single 282 
column. However, when one column undergoes a mild TBI, i.e. firing threshold for pyramidal 283 
neuron is lowered to 2.5 mv from 6 mv, it may be observed that the PSD of the membrane 284 
potential of the “normal” neighbor also gets smeared (An attenuation factor, or K value, of 10 and 285 
ad = a, i.e. the signal attenuates to 1/10

th
 of its value in reaching the neighbor is employed). Note 286 

that the observed EEG at any of the electrodes is the weighted sum of rhythmic activity from 287 
many different areas, where the weight depends on the spatial distance from the measuring 288 
electrode. To see the effect of distance, TBI in coupled neurons that are further apart with a higher 289 
attenuation factor (K = 60) are also simulated. 290 



 291 

Figure 12. PSD of two connected cortical columns with K=60 292 

It may be observed that the input from a “normal” cortical column ameliorates the PSD to certain 293 
extent, i.e. masks the smearing effect observed earlier. However, the “normal” column PSD is not 294 
impacted significantly. 295 

In Figure, a mild TBI in neighboring coupled cortical columns is induced. The coupling between 296 
columns causes the PSD to be almost identical even with mild TBI, and both columns exhibit the 297 
flattening of the PSD. 298 
 299 

 300 

Figure 13. Smearing of the PSD due to mild TBI 301 
 302 

Thus, from the above plots, it can be concluded that that a mild TBI to a cortical column can 303 
indeed manifest in the electrical activity of its immediate neighbors. Further, as the distance grows 304 
and the connectivity between columns is reduced, the effect on neighboring columns is decreased 305 
in this model. Even somewhat distant neighboring columns can mask the severity of a mild TBI 306 
(reduce the smearing effect on PSD). If the area of a mild TBI encompasses multiple cortical 307 
columns, the smearing of the PSD can be useful marker in determining the location and spatial 308 
extent of the injury. 309 

The above results can be used for creating an EEG marker for mild TBI in terms of magnitude and 310 
location of the injury. Such precise information can be very useful in determining the recovery 311 
measures. 312 

 313 

5 Model  2:  The Ursino Neural  Mass Model  314 

The Ursino model improves upon the Jansen & Rit model discussed in the foregoing sections by 315 
adding a fast inhibitory interneuron loop. This loop plays a significant role in the generation of γ-316 
band oscillations. These gamma frequencies are important for attention and concentration tasks 317 
performed by the frontal lobe (Gaona, 2011) and may provide a good biomarker for TBI, since 318 
difficulties with cognitive tasks such as impaired concentration are a hallmark of TBI. 319 

 320 



In order to model a whole cortical area the four populations – excitatory, fast and slow inhibitory 321 
interneuron, pyramidal neurons – are connected via excitatory and inhibitory synapses with 322 

impulse responses              and      . The average numbers of synaptic contacts among 323 

neural population are represented by eight parameters    , where the first subscript represents the 324 

target (post-synaptic) population and second subscript denotes the pre-synaptic population. These 325 
are illustrated in Figure 12. 326 

 327 

 328 

Figure 14 Single Cortex model as proposed by Ursino 329 

An important aspect of the model is that it explicitly includes external inputs. Since inputs 330 
originate from pyramidal neurons in other cortical areas, this model assumes that they always act 331 
via the excitatory synapses. Lateral connections in the cortex target all layers, and hence, the 332 
inputs can reach pyramidal cells, excitatory interneurons as well as inhibitory interneurons. For 333 
brevity, the present model considers only inputs to pyramidal neurons and to fast inhibitory 334 
interneurons. 335 

The connectivity between two separate cortical areas is modeled as excitatory connections with a 336 

time delay. The average spike density of the pyramidal neurons of the pre-synaptic area    
   337 

affects the post-synaptic area through a weight factor   
  

, where j = p or f depending on 338 



whether the synapse target to pyramidal neurons or fast inhibitory neurons and a time delay  . 339 

This is achieved by modifying the input quantities   
  or/and   

 
 of the target region. This can be 340 

expressed mathematically as: 341 

  
        

        
    

                       

where       represents Gaussian white noise. 342 

 343 

5 .1  I mple menta t io n  o f  S ing le  Co rtex  mo de l  344 

 345 

Figure 15 illustrates the single cortex implemented in the present work. It is similar to the previous 346 
figure and specifies all the parameters of the model. 347 

 348 
 349 

Figure 15 Implementation of Cortex model 350 

The input provided to the model is generated using a white Gaussian noise with mean     and 351 

variance     . The output and input are sampled at 1000Hz. 352 

Figure 16 illustrates the post-synaptic potential generated at the output of the pyramidal neurons in 353 
the model given in Figure 15. As can be observed, it shows oscillations at the low and high 354 
frequency band (Figure 15) Figure 16 below represents the EEG of a human recorded from the 355 
frontal lobe in a concentration task. The frequency spectrum in Figure 15 is similar to Figure 16 356 
and also shows peaks at the gamma band range.  357 

 358 

 359 



Figure 16 Post-Synaptic potential at Pyramidal Neurons 360 

 361 

Figure 17 PSD of Post-Synaptic Potential generated by the model 362 

 363 

Figure 18 EEG of Human Brain in a concentration task (Gaona, 2011) 364 

 365 

5 .2  I mple menta t io n  o f  A D ua l  Co rtex  mo de l  366 

Figure 19 represents two instances of the above cortex models connected through long- range 367 
connectivity functions explained before. 368 

 369 
 370 

Figure 19 Dual Cortex model  371 

As can be observed from the above figure, the pyramidal population of each model provides inputs 372 
to the fast inhibitory interneuron in the other. A time delay of 10ms is used to simulate the delay 373 
introduced due to long distance connectivity. The weight of each connection is set at 15. 374 

 375 

5 .3  M o dera te  to  Sev ere  T B I  in  Dua l  Co rtex  mo de l  376 

In order to simulate moderate to severe TBI in the dual cortex model, effective synaptic 377 
connectivity between neural populations       is reduced in one of the cortex models. The 378 

behaviour of the model at various levels of connectivity was measured and is illustrated below. 379 

100 100 0 



 380 

 381 

Figure 20 PSD/Frequency at different connectivity levels 382 

As can be seen from the figure above, the peak at 25% connectivity is around 20Hz (blue line) and 383 
peak at 100% connectivity is around 34Hz (red line). Thus, as the connectivity decreases, the peak 384 
moves towards a lower frequency. This is similar to those observed in moderate brain injuries 385 
where diffuse slowing of activity (increased low frequency activity) is a sign of injury. 386 

 387 

5 .4  M i ld  TB I  in  Dua l  Co rtex  mo de l  388 

Mild TBI is observed in the initial few moments after an injury to the brain. In a mild TBI, there is 389 
an increase in Glutamate which is an excitatory neurotransmitter. This results in an increase in the 390 
firing rate of the neurons. This can be modeled by increasing the slope of the sigmoid function. As 391 
expected, the peak occurs at a higher frequency with increasing firing rates. 392 
 393 

 394 

Figure 21 Mild TBI Simulation 395 

 396 

4 Summary and Conclusions 397 



This paper presented an investigation into the feasibility of using neural mass models to 398 
characterize the macroscopic frequency domain response of the brain to traumatic brain 399 
injuries.  400 

Traumatic brain injury is a disease of local damage to local neural masses that create the 401 
clinical symptoms discussed in the earlier portions of this paper. There is a pressing need for 402 
the development of neurophysiologically based models of the disease to aid in disease 403 
monitoring, progression and treatment response.  404 

Basic single and dual cortex architecture models were developed during the present study. 405 
Gaussian white noise excitation, simulating the resting brain was used to analyze the 406 
dominant frequency components in the spectrum of the model response. It was then 407 
demonstrated that the present model accurately captures the alpha and gamma rhythms 408 
observed in the EEG of resting brain.  TBI was simulated by varying the neural mass 409 
connection parameters in the model. Simulated moderate and severe TBI create changes in 410 
the power spectral density of the model outputs that begin to approximate observed clinical 411 
changes. A marker of mild TBI is described based upon well -described physiological 412 
derangements after concussions. Using the Jansen and Rit model, the changes to the alpha 413 
band in the occipital lobe after various traumatic injuries was demonstrated, and possible 414 
mechanisms of recovery was advanced. Moreover, changes to the gamma band of the frontal 415 
lobe after various injuries were demonstrated using the Ursino neural mass model.  416 

The highly positive nature of present work motivates future explorations into the design of 417 
graduated animal experiments to describe neurophysiological changes associated with TBI.  418 

Future work will also undertake a more thorough linear analysis of a dual cortex and 419 
multicortex model to supplement the simulation results. These investigations will allow 420 
more accurate prediction of changes to brain’s electrodynamic activities due to TBI and will 421 
aid in the reconstruction of clinically derived EEG recordings. Other future research 422 
directions can include creating an EEG shell model employing several more interconnected 423 
neural mass models to simulate other traumatic injury scenarios and create the associated 424 
scalp EEG readings that can be used to correlate with clinically derived EEG recordings (see 425 
appendix for an initial Simulink® model) . 426 
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Appendix 492 

We implemented a model for multiple connected columns, such that each column 493 

is connected to its 4 neighbors. To avoid egde effects, the columns on the top row 494 

are connected to the bottom row and the ones on the left to the right. Then we 495 

create a TBI in the central node and observe the PSD changes in the grid. 496 

 497 

 498 
Multiple Cortical column model 499 


