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Introduction 

 The skin functions as the main physical barrier protecting the body from the external 

environment. This protective barrier, depicted in Figure 1 [1] is divided into three parts, each 

with different diffusion coefficients. First on the outside is the stratum corneum, which has the 

lowest diffusion coefficient of the three. The stratum corneum consists of “keratin-filled, 

biologically inactive, dried, flattened cells” [1]. This layer, as a whole, is continuous, with very 

little void space, and “provides almost all of the mechanical strength of the epidermis. The next 

layer is the epidermis basal layer that provides a steady supply of cells to the the stratum 

corneum to maintain itself [1]. Last is the dermis. 

  

 

Considering the diffusion properties of the layers, it is apparent that the stratum corneum 

plays the most important role in protecting the internal environment of the body from external 

factors. Factors that contribute to increases in skin permeability to substances are generally 

considered to fall into one of the following groups [1]: 

(1) certain substances, such as strong therapeutic drugs and toxins, are capable of 

diffusing across the skin despite low concentrations present on the surface 

(2) certain substances are capable of affecting the permeability of the skin as they diffuse 

across.  

The focus of this bioengineering problem solving is diffusion of therapeutic drugs across 

the skin. Therapeutic patches are available for many medical uses, and one such use is a 

lidocaine patch [2]. One specific example of the benefit of lidocaine therapeutic patch is the pain 

relief it provides to patients with postherpetic neuralgia [2]. Postherpetic neuralgia, a chronic 

pain disorder, usually occurs after people have suffered from herpes zoster, commonly known as 

shingles [3]. Shingles is a result of reactivation of dormant virus that had caused chickenpox in 

the patients years ago [4]. Nerve damage during shingles is stated as the cause of postherpetic 

neuralgia [3]. Lidocaine, in this case, serves as a local anesthetic that provides temporary pain 

relief [2, 3, 5]. One study considered a patch without lidocaine versus a patch with lidocaine on 

the benefits in pain relief for these patients [2]. The results indicated that the patch with lidocaine 

definitely provided greater relief. Additionally, the study determined that there was little to no 

side effects from the use of the lidocaine patch, and that the blood levels of lidocaine were not 

significant [2]. The therapeutic effects are thought to come from blocking of sodium channels, 

which in turn decrease “ectopic discharges from damaged peripheral sensory nerves” [2].  

 

Figure 1 [1]. Depiction 

of the different layers of 

human skin. The 

stratum corneum, basal 

layer, and the dermis 

form the three separate 

layers. This specific 

image, with the 

dimension values, 

focuses on abdominal 

skin. 



Problem Statement 

 
This lidocaine therapeutic patch applies to bioengineering in that the therapy involves 

diffusion of lidocaine molecules across skin. The diffusion properties is a function of the 

membrane and the drug molecules, and in this problem solving, a simplified model of diffusion 

of drug molecules across skin is solved analytically and numerically. 

 Separation of variables is the mathematical process used in solving the partial differential 

equation analytically. Several simplifications are made to the realistic model, in order to solve 

the problem using separation of variables method. The simplifications entail certain assumptions 

listed below: 

(1) The skin is modeled as a homogeneous slab with surface area that is much greater than 

the total thickness. This assumes that all three layers of the skin have the same diffusion 

coefficient, and in effect form one slab. In addition, the intrinsic inhomogeneity of the 

layers are not considered. Any variations in the thickness, diffusion across sweat ducts, 

hair follicles, any short pathways, and other surface defects are not considered. 

(2) The therapeutic patch, attached to the skin, is infinitely thin. Therefore, volume is 

negligible. 

(3) Microcirculation in the capillaries carries the drug molecules away from the site at a very 

fast rate, maintaining the inner concentration at 0. 

(4) The change in concentration in the patch is minimal, such that assumption of zero flux at 

the patch-skin interface is valid. 

 

 
 

Figure 2: Representation of the 

skin model used in the problem 

solving. The patch application is at 

the outer edge of the stratum 

corneum (left side of figure), where 

flux is set to zero. The inside edge 

is the interface between the dermis 

and the capillaries. For the 

analytical solution, all three layers 

were assumed to have the same 

diffusion coefficient, and therefore 

effectively became one slab. 



Analytical Solution 

                                      Partial Differential Equation – Fick’s Law:   
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MATLAB Analytical Solutions 

 

Figure 3: Surface plot of analytical solution approximated using the first 200 terms of the series. 



 

Figure 4: Variation of concentration over thickness of the skin of the analytical solution at 

distinct time points. 

 

 

 

 

 

 

 

 

 

 

 



MATLAB Numerical Analysis 

1-Slab Model 

In the simplest model, the skin was modeled as one slab of thickness L with constant diffusivity 

D. This model makes the basic assumption that the skin is a homogenous slab of skin with 

constant thickness and diffusivity. It assumes that the impulse in concentration diffuses through 

only 1 compartment in the skin towards the sink at the location of the capillaries. This model can 

be applied to diffusion across the skin under the assumption that the stratum corneum serves as 

the only barrier to drug diffusion and that it spans the entire skin thickness. The boundary and 

initial conditions of this model were the same as the analytical model. The diffusivity of this 

slab, D1, was estimated to be approximately 10
-10

 cm
2
/s. The thickness of the slab was 

approximated to be 1 mm. For the numerical analysis, the concentration at t = 0 and x = 0 was 

designated to be 1 molar. 

 

Figure 5:  Surface plot of PDEPE numerical analysis of the 1-slab model 

  

 



 

Figure 6:  Variation of concentration over thickness of the skin of the MATLAB numerical 

analysis of the 1-slab model at distinct time points 

 

 

 

 

 

 

 

 

 

 

 

 



2-Slab Model 

This model served to provide a slightly more accurate representation of the heterogeneity of the 

layers in the skin. The stratum corneum and the epidermis of the skin were modeled to be 2 slabs 

in series, with different diffusion coefficients. This model takes into account the variation of 

diffusivity across the skin, where the hydrated layer, the epidermis, has a greater diffusion 

coefficient than the dry stratum corneum. The outer slab, modeling the stratum corneum, was 

estimated to be 1/40
th

 of the entire thickness of the skin and was designated a diffusion 

coefficient, D1, of 10
-10

 cm
2
/s. The inner slab, modeling the epidermis, was estimate to be 

39/40
ths

 of the thickness of the skin with a higher diffusion coefficient, D2, of 10
-6

 cm
2
/s. The 

total thickness of the two slabs was estimated to be 1 mm. For the numerical analysis, the initial 

concentration at x=0 and t=0 was designated to be 1 molar. 

 

Figure 7:  Variation of concentration over thickness of the skin of the MATLAB numerical 

analysis of the 2-slab model at distinct time points 

 



 

Figure 8:  Variation of concentration across the interface in MATLAB numerical analysis of the 

2-slab model at distinct time points 

 

 

 

 

 

 

 

 

 

 

 

 



3-Slab Model 

This model served to account for the slight differences in the properties of the epidermis and the 

dermis. The skin was modeled to be 3 slabs with the stratum corneum on the outside, the 

epidermis in the middle and the dermis located adjacent to the capillaries. The outer slab, 

modeling the stratum corneum, was estimated to be 1/32
nd

 of the entire thickness of the skin and 

was designated a diffusion coefficient, D1, of 10
-10

 cm
2
/s. The center slab, modeling the 

epidermis, was estimate to be 15/32
nds

 of the thickness of the skin with a higher diffusion 

coefficient, D2, of 10
-6

 cm
2
/s.  The inner slab, modeling the dermis, was estimated to be ½ the 

thickness of the skin with a diffusion coefficient, D3, of 10
-5

 cm
2
/s. The total thickness was 

estimated to be 1 mm. For the numerical analysis, the initial concentration at x=0 and t=0 was 

designated to be 1 molar. 

 

 

Figure 9:  Variation of concentration over thickness of the skin of the MATLAB numerical 

analysis of the 3-slab model at distinct time points 

 

 



 

Figure 10:  Variation of concentration across the interfaces in MATLAB numerical analysis of 

the 3-slab model at distinct time points 

 

 

 

 

 

 

 

 

 

 

 

 



Linear Diffusivity Slab Model 

In this model, the diffusivity of the skin was modeled to be dependent on the spatial position.  

This model was intended to represent a linear change in diffusivity from that of the stratum 

corneum to that of the capillary interface. The diffusion coefficient relation is given by the 

expression      (     )     . For the numerical analysis, the thickness was estimated to 

be 1 mm with an initial concentration designated to be 1 molar. 

 

Figure 11:  Variation of concentration over thickness of the skin of the MATLAB numerical 

analysis of the 2-slab linear diffusivity model at distinct time points 

 

 

 

 

 

 

 

 



Hyperbolic Diffusivity Slab Model 

In this model, the diffusion coefficient of the skin was modeled to be more representative of the 

spatial dependence. This model was intended to represent a hyperbolic change in diffusivity from 

that of the stratum corneum to that of the capillary interface. The diffusion coefficient relation is 

given by the expression      (     )  (      ). For the numerical analysis, the 

thickness was estimated to be 1 mm with an initial concentration designated to be 1 molar. 

Furthermore, the constant k was chosen based upon the relation of diffusivity to thickness such 

that the diffusion coefficient was D2 for 90% of the thickness of the skin. 

 

 

Figure 12:  Variation of concentration over thickness of the skin of the MATLAB numerical 

analysis of the 2-slab hyperbolic diffusivity model at distinct time points 

 

 

 

 

 



Discussion 

Fick’s Law was used to quantitatively model the simplified diffusion of particles across 

skin when an infinitely thin patch is placed on the outside of the stratum corneum. The 

homogeneous equation and boundary conditions that described the simplified model enabled 

solving the diffusion problem using separation of variables.The behavior of the analytical 

solution was according to expectations, as a half-Gaussian distribution decaying over time. This 

behavior is characteristic of the passive diffusion of a finite quantity that is bounded by zero flux 

at the source point and zero boundary condition at the limit of the spatial interval. The surface 

plot, Figure 3, demonstrated the exponential decay over space and time. The time section plots 

demonstrated the decay in the Gaussian distributions as the amplitude decreased over time and 

expanded in breadth. 

The numerical analysis of the 1-slab model demonstrated similar behavior but it decayed 

faster than the analytical solution as seen in the surface plot, Figure 5.  The immediate decay in 

time and space were more pronounced in this model in comparison to the analytical model which 

demonstrated oscillatory behavior in the initial time steps.  This simple numerical analysis did 

show a similar decay in the Gaussian distribution over time and space as the amplitude decreased 

and the spread increased over time.  This model decayed much more rapidly than the analytical 

model and achieves lower concentrations after shorter periods. 

The 2-slab model demonstrated interesting behavior over time.  As seen in Figures 7 and 

8, there was a distinct decay in the model at the point in space corresponding to the interface of 

the two regions.  The concentration decreased to nearly zero at this point in space.  A plot of the 

concentration at this interface indicated the presence of extremely low concentrations that are 

negligible when compared to the initial behavior. This related to the biological phenomenon 

where stratum corneum limited diffusion much more than the other layers. An evolution of the 

initial Gaussian distribution is apparent as its behavior becomes distinctly parabolic at 

approximately t = 0.8-1.1 s time step. The decay of this model is on the same time scale as the 1-

slab model. 

The numerical analysis of the 3-slab model, depicted in Figures 9 and 10, demonstrated a 

similar behavior to the 2-slab model.  The plot indicates that the concentration drops to very 

small values at the first interface in a similar manner to the previous model.  Additionally, there 

is a transformation of the initial Gaussian distribution into a parabolic behavior at approximately 

t = 1.1 s time step.  A closer look at the variation of the concentration across the two interfaces in 

this model, shown in Figure 10, reveals linear distribution of concentration across the other two 

slabs.  The middle slab demonstrates a greater variation in concentration that can be 

appropriately attributed to its lower diffusivity compared to the last slab.  Overall, the behavior 

of this model is on the same time scale as the 2-slab model, with the most significant distinction 

being the difference in location of the first interface. 

The linear diffusivity slab model, plotted in Figure 11, was established to perform a 

numerical analysis of the diffusion across a slab where the diffusivity increased linearly with the 

spatial position.  This model was intended to more accurately represent variations of diffusivity 

in skin due to inhomogeneous mixtures of cells types.  This simplified model demonstrated an 

exponential decay that rapidly decreased with time and space.  One should note that despite 

having the same time scale as the 2-slab and 3-slab models, this model displays 

concentrations  approximately 10
-3

 times lower than the other two models.  



The hyperbolic diffusivity slab model was a modification of the linear diffusivity slab 

model in order to represent the variation in more realistic fashion.  The diffusivity expression 

was formulated to display steep increase in diffusivity over a small interval between the two 

regions, designated as the interface.  Furthermore, this model does not assume that the stratum 

corneum has a constant diffusion, but it assumes that the diffusivity increases as the solute 

traverses this layer.  This model shows a bell shaped distribution of concentration over the 

thickness of the skin.  It displays a rapid decrease in concentration over time.  This model 

displays concentrations approximately 10 times lower than the 2-slab and 3-slab 

models.  Though this model decays quite rapidly, it is not to the extent of the linear diffusivity 

model. 

 

Limitations 
 

    There were two main limitations in the analytical and numerical solutions of these 

models.  For the analytical solution, the approximation of the infinite series to the first 200 terms 

neglects many of the higher eigenmodes of diffusion.  It also establishes an infinite value for the 

initial concentration which is contrary to the reality of such a phenomenon where the initial 

concentration is finite.  To account for this feature of the analytical solution, the solution was 

scaled down appropriately to establish the initial concentration at x=0 and t=0 to be 1 molar to 

provide adequate means for comparison with the numerical methods. 

    The main limitation with the numerical analyses was in the representation of the initial 

condition as an impulse function.  In this study, the initial conditions were modeled as finite 

quantity Ci at point x=0 with zero for all other x points.  This is realistic representation of the 

initial conditions but it fails to adequately represent the mathematical description of a delta 

function. 

    Our problem formulation of the diffusion across skin has limitations that can be 

addressed in future works.  First, we only consider 1-dimensional diffusion across the skin, 

whereas a more accurate model would consider diffusion across the other 2 spatial dimensions 

with their respective diffusion coefficients.  Second, the simplifying assumptions regarding the 

inhomogeneity of skin need to be addressed to create more accurate models for diffusion across 

the skin.  The thickness of the skin and its individual layers will not be constant in a given area 

but will depend on the spatial positions.  Furthermore, the diffusivity of the skin cannot be 

modeled accurately as a constant due to differences in the cellular structure of the skin and their 

contribution to the diffusivity.  Considering the spatial dependence of diffusivity, the hyperbolic 

function appears to be more reasonable in comparison to the linear model.  However, this model 

can only be verified with experimental data.  Third, the model must consider the membrane 

partition coefficient as well as the clearance rate of the diffusing solute.  The membrane partition 

coefficient relates the ratio of the concentrations at the air-skin interface and accurately 

determines the amount of substance initially diffusing into the skin.  The clearance rate 

determines the quantity of solute diffused out of the skin into the capillaries.  In our models, we 

did not consider these two aspects of the drug diffusion. 

Future Work 

 Future work in modeling the diffusion of solute across skin can be made more accurate 

by including specific inhomogeneous diffusion properties of the skin tissue. In addition, the 



patch can be modeled with a volume rather than one with infinitely thin thickness. This would 

represent the actual conditions for the diffusion of therapeutic molecules, such as lidocaine, from 

a finite volume through the skin-patch interface. Other physiological considerations include 

clearance rate and partition coefficients that divide the different layers. Partition coefficients 

mathematically would create discontinuities of the concentration function at the interfaces, and 

modeling and solving would increase in complexity. Nevertheless, the accurate representation 

would be useful in understanding skin permeability. 

 Additionally, the skin would be better represented when all three spatial dimensions are 

included, rather than the one dimension used in this problem solving. Diffusion of solutes 

through the skin would involve all three dimensions, and to understand those effects through 

rigorous modeling would be beneficial.  
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Appendix – MATLAB Codes and Scan of Analytical Solution 

MATLAB Codes for Numerical Simulations 

global D1 D2 D3 Ci L 
D1 = 10^-10; %cm^2/s 

  
D2 = 10^-6; 
D3 = 10^-5; 
Ci = 1; % 1 micromolar 
L = .001; %200 microns 

 

Analytical Solution 
 

for n = 0:200 
    for i = 1:length(t) 
        for j = 1:length(x) 
            c1(i,j) = c1(i,j)+2/L*Ci*cos((2*n+1)*pi*x(j)/(2*L))*exp(-

D1*((2*n+1)*pi/(2*L))^2*t(i)); 
        end 
    end 
end 
c1 = c1/c1(1,1); %scaling to account for infinite value at c1(0,0) 

  
figure 
mesh(x,t,c1) 
% Az -12  El -6 
xlabel('x - Distance(m)') 
ylabel('t - Time(s)') 
zlabel('c(x,t) - Concentration (M)') 
title('Analytical Solution') 

  
pAn1 = c1(5,:); 
pAn2 = c1(15,:); 
pAn3 = c1(35,:); 
pAn4 = c1(75,:); 
pAn5 = c1(105,:); 

  
figure 
plot(x,pAn1,'b',x,pAn2,'g',x,pAn3,'r',x,pAn4,'m',x,pAn5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
xlim([0 0.0001]) 
title('Analytical solution at distinct times') 
legend('t = .5 s','t = 1.5 s','t = 3.5 s','t = 7.5 s','t = 10.5 s') 

  

Numerical Solution for a 1 – Slab Model  

 
t = linspace(0,100,1000); 
x = linspace(0,L,1000); 
ps = pdepe(0,@pdefun2,@ic2,@bc2,x,t); 
figure 
mesh(x,t,ps) 
% Az -10 El -10 



xlabel('x - Distance(m)') 
ylabel('t - Time(s)') 
zlabel('c(x,t) - Concentration (M)') 

  
ps1 = ps(6,:); 
ps2 = ps(21,:); 
ps3 = ps(51,:); 
ps4 = ps(201,:); 
ps5 = ps(501,:); 

  
figure 
plot(x,ps1,'b',x,ps2,'g',x,ps3,'r',x,ps4,'m',x,ps5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
xlim([ 0 0.0004]) 
title('Concentration of 1 slab model at distinct times') 
legend('t = .5 s','t = 2 s','t = 5 s','t = 20 s','t = 50 s') 

  

Numerical Solution for a 2 – Slab Model 
 
psA = pdepe(0,@pdefun4,@ic2,@bc2,x,t); 
figure 
mesh(x,t,psA) 
% Az -10 El -10 
xlabel('x - Distance(m)') 
ylabel('t - Time(s)') 
zlabel('c(x,t) - Concentration (M)') 

  
psA1 = psA(3,:); 
psA2 = psA(6,:); 
psA3 = psA(9,:); 
psA4 = psA(12,:); 
psA5 = psA(24,:); 

  
figure 
plot(x,psA1,'b',x,psA2,'g',x,psA3,'r',x,psA4,'m',x,psA5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
xlim([0 2*L/40]) 
title('Concentration of 2 slab model at distinct times') 
legend('t = .2 s','t = .5 s','t = .8 s','t = 1.1 s','t = 2.3 s') 

  
figure 
plot(x,psA1,'b',x,psA2,'g',x,psA3,'r',x,psA4,'m',x,psA5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
xlim([0 2*L/40]) 
ylim([0 0.0005]) 
title('Concentration of 2 slab model at distinct times') 
legend('t = .2 s','t = .5 s','t = .8 s','t = 1.1 s','t = 2.3 s') 

  

Numerical Solution for a 3 – Slab Model 
  
psB = pdepe(0,@pdefun6,@ic2,@bc2,x,t); 



figure 
mesh(x,t,psB) 
% Az -10 El -10 
xlabel('x - Distance(m)') 
ylabel('t - Time(s)') 
zlabel('c(x,t) - Concentration (M)') 

  
psB1 = psB(3,:); 
psB2 = psB(6,:); 
psB3 = psB(9,:); 
psB4 = psB(12,:); 
psB5 = psB(24,:); 

  
figure 
plot(x,psB1,'b',x,psB2,'g',x,psB3,'r',x,psB4,'m',x,psB5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
xlim([0 0.00008]) 
title('Concentration of 3 slab model at distinct times') 
legend('t = .2 s','t = .5 s','t = .8 s','t = 1.1 s','t = 2.3 s') 

  
figure 
plot(x,psB1,'b',x,psB2,'g',x,psB3,'r',x,psB4,'m',x,psB5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
xlim([0 0.0008]) 
ylim([0 0.00005]) 
title('Concentration of 3 slab model at distinct times') 
legend('t = .2 s','t = .5 s','t = .8 s','t = 1.1 s','t = 2.3 s') 

  

Numerical Solution for a 1- Slab Model with hyperbolic dependence of diffusivity on x 
 

psC = pdepe(0,@pdefun5,@ic2,@bc2,x,t); 
figure 
mesh(x,t,psC) 
% Az -10 El -10 
xlabel('x - Distance(m)') 
ylabel('t - Time(s)') 
zlabel('c(x,t) - Concentration (M)') 

  
psC1 = psC(2,:); 
psC2 = psC(4,:); 
psC3 = psC(6,:); 
psC4 = psC(8,:); 
psC5 = psC(12,:); 

  
figure 
plot(x,psC1,'b',x,psC2,'g',x,psC3,'r',x,psC4,'m',x,psC5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
title('Concentration of hyperbolic diffusivity slab model at distinct times') 
legend('t = .1 s','t = .3 s','t = .5 s','t = 0.9 s','t = 1.1 s') 

  

Numerical Solution for a 1- Slab Model with linear dependence of diffusivity on x 
 



psD = pdepe(0,@pdefun3,@ic2,@bc2,x,t); 
figure 
mesh(x,t,psD) 
% Az -10 El -10 
xlabel('x - Distance(m)') 
ylabel('t - Time(s)') 
zlabel('c(x,t) - Concentration (M)') 

  
psD1 = psD(2,:); 
psD2 = psD(4,:); 
psD3 = psD(6,:); 
psD4 = psD(8,:); 
psD5 = psD(12,:); 

  
figure 
plot(x,psD1,'b',x,psD2,'g',x,psD3,'r',x,psD4,'m',x,psD5,'k') 
xlabel('x - Distance(m)') 
ylabel('c(x,t) - Concentration (M)') 
title('Concentration of linear diffusivity slab model at distinct times') 
legend('t = .2 s','t = .5 s','t = .8 s','t = 1.1 s','t = 2.3 s') 

 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PEDPE Function Definitions 

  
% boundary conditions 

 

Defined such that the following equation is true at the left and 

right boundaries. 
 

 (     )   (   )( (      
  

  
)    

function [pl,ql,pr,qr] = bc2(xl,ul,xr,ur,t) 
pl = 0; 
ql = 1; 
pr = ur; 
qr = 0; 

  
% initial condition 

Defined as the values of c(x,0) =    (x) 
function u0 = ic2(x) 
global Ci 
u0 = Ci * (x==0); 

  
% PDEPE Functions 

 Defined such that the following equation is true at the left and 

right boundaries. 
 

 (      
  

  
)  
  

  
     

 (     (      
  
  
))

  
  (      

  

  
) 

% 1-Slab PDE Function 
function [c,f,s] = pdefun2(x,t,u,DuDx) 



global D1  
c = 1; 
f = (D1)*DuDx; 
s = 0; 

  
% 2-Slab PDE Function 
function [c,f,s] = pdefun4(x,t,u,DuDx) 
global D1 D2 L 
c = 1; 
f = (((D1+D2)/2)+((D1-D2)/2)*(x<L/40)+((D2-D1)/2)*(x>L/40))*DuDx; 
s = 0; 

  
% 3-Slab PDE Function 
function [c,f,s] = pdefun6(x,t,u,DuDx) 
global D1 D2 D3 L 
c = 1; 
f = (D3+(D2-D3)*(x<=15*L/32)+(D1-D2)*(x<=L/32))*DuDx; 
s = 0; 

  
% 1-Slab Hyperbolic Diffusivity PDE Function 
function [c,f,s] = pdefun5(x,t,u,DuDx) 
global D1 D2  
k = 40000; 
c = 1; 
f = (D1+(D2-D1)*(1-exp(-k*x)))*DuDx; 
s = 0; 

  
% 1-Slab Linear Diffusivity PDE Function 
function [c,f,s] = pdefun3(x,t,u,DuDx) 
global D1 D2 L 
c = 1; 
f = (D1+(D2-D1)*x/L)*DuDx; 
s = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 


