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Tirapazamine (TPZ; 1,2,4-benzotriazin-3-amine 1,4-dioxide) is a hypoxia-activated prodrug currently being studied 
for antitumor usage. “When activated by one-electron enzymatic reduction, tirapazamine induces radical-mediated 
oxidative DNA strand cleavage” to selectively kill hypoxic tumor cells (Figure1).1 Tirapazamine distinguishes 
tumor cells from healthy cells by their relative oxygenations. Because solid tumors have poorly organized 
vasculature, cells far from the blood vessels receive an inadequate supply of oxygen.  This is an environment 
fundamentally different from that in the rest of the body, and presents an interesting opportunity for selective 
targeting.  Unfortunately, there is also significant evidence showing that hypoxic tumor cells are often resistant to 
conventional anticancer treatments like radiotherapy and chemotherapy.3 The development and study of prodrugs 
that can circumvent these limitations is therefore of substantial relevance. 

Problem Statement: 

Figure 1. The one-electron enzymatic reduction reaction 
between the inactive prodrug Tirapazamine and its active 
form.2 

 

 

The particular pharmacokinetic characteristics of a drug such as tirapazamine determine how it is metabolized in the 
body. In typical drug studies, concentration of a compound in the blood plasma is important. The aim is to formulate 
a dose and dosing schedule that will result in a plasma concentration below the toxicity limit and above the 
minimum effective dose limit; that is, the therapeutic window. In terms of maintaining a constant drug concentration 
in the plasma, the most effective method to achieve this is would be to employ continuous intravenous infusion. 
However, this is neither uniformly practical nor convenient for the patient, and other methods, such as an IV bolus 
dose, oral solution or pill, or patch should be considered.  

In biomedical applications, transdermal patches are typically used to deliver low molecular weight drugs over long 
time courses in a controlled fashion. The drug is usually incorporated into a gel or liquid reservoir in the patch and 
applied to the skin using an adhesive. During the time that the patch is applied, the drug diffuses from the patch into 
the body. Because this delivery method relies on diffusion, transdermal drug delivery is feasible only for small 
molecules. Tirapazamine’s relatively low molecular weight (Mr = 178.148 g/mol) in comparison to other common 
compounds currently incorporated into patches, such as nicotine (Mr = 162.26 g/mol) and nitroglycerin (Mr = 
227.087 g/mol), make it an excellent candidate for transdermal drug delivery.  

We aimed to mathematically model the drug concentration changes at the absorption site, within the blood, and at 
the site of metabolism. Specifically, we will examine the case of drug distribution via a tirapazamine-impregnated 
transdermal patch.  

To accomplish this, we chose to model drug absorption, circulation, and metabolism in terms of a three-
compartment model. The first compartment corresponds to the transdermal patch itself. From this compartment, the 
drug diffuses through the skin into the second compartment, the blood. Assuming a well-mixed case, the drug 
content is then subtracted from this second compartment and shuttled into the third compartment via drug 
metabolism. The third compartment represents the site of metabolism at hypoxic tumor sites: these locations are 



where tirapazamine is converted from prodrug into its active form. This metabolic process is saturable, and therefore 
follows Michaelis-Menten kinetics.4 

 

 

Figure 2. Schematic representation of our three-compartment model. 

In mathematical form, our model is represented by a system of three ODEs. Each equation describes the change in 
drug concentration in their respective compartments over time. P, C, and M represent the three patch, circulation, 
and metabolism compartments, respectively, described above. k1 represents the diffusion constant from the patch to 
the circulation, and Vmax and Km are the standard Michaelis-Menten parameters. 
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Most drug concentrations are well below Km for metabolizing enzymes.4 Therefore we used this assumption for 
tirapazamine to simplify the nonlinear system of equations. The rate of metabolism becomes proportional drug 
concentration and follows a first order rate which simplifies the system of differential equation to: 

Simplified Solution: 

𝑑𝑃
𝑑𝑡

= −𝑘1𝑃                                                                            𝑃(0) = 𝑃𝑜  

𝑑𝐶
𝑑𝑡

= 𝑘1𝑃 − 𝑘2𝐶 where  𝑘2 = 𝑉𝑚𝑎𝑥
𝐾𝑚

                                𝐶(0) = 0 

𝑑𝑀
𝑑𝑡

= 𝑘2𝐶                                                                             𝑀(0) = 0                                                                        

To solve this system of first order differential equations, we will use the eigenvalue and eigenvector method.  
Rewriting these differential equations in matrix form, we get: 

𝑑𝑨
𝑑𝑡

= 𝑩 ∙ 𝑨 𝑤ℎ𝑒𝑟𝑒  

𝑨 = �
𝑃
𝐶
𝑀
�     𝑎𝑛𝑑  𝑩 = �

−𝑘1 0 0
𝑘1 −𝑘2 0
0 𝑘2 0

�  and initial conditions represented as  𝑨(0) = �
𝑃0
0
0
�     
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To find the eigenvalues λof the matrix, we will need to determine the values of λ for which the determinant of (B-λI) 
is equal to zero. 

𝑑𝑒𝑡(𝑩 − λ𝐈) = 𝑑𝑒𝑡 �
−𝑘1 − λ 0 0
𝑘1 −𝑘2 − λ 0
0 𝑘2 0 − λ

� = 𝟎 

The determinant of the matrix reduces to: 

(−𝑘1 − λ)(−𝑘2 − λ)(0 − λ) = 0  

Setting each of these factors to zero gives us 3 λ values (eigenvalues): 

(−𝑘1 − λ) = 0  λ1 = −𝑘1 

(−𝑘2 − λ) = 0  λ2 = −𝑘2 

(0 − λ) = 0  λ3 = 0 

Now we must find the corresponding eigenvector for each eigenvalue by substituting each eigenvalue into 𝑩 −
λn𝐈 and solving for the vector that satisfies:[𝑩 − λn𝐈][𝐯] = 0 

For λ1 = −𝑘1: 

�
−𝑘1 − (−𝑘1) 0 0

𝑘1 −𝑘2 − (−𝑘1) 0
0 𝑘2 0 − (−𝑘1)

� �
𝑣1
𝑣2
𝑣3
�  = 0 

which is equivalent to: 

(0)𝑣1 + (0)𝑣2 +  (0)𝑣3 = 0 

(𝑘1)𝑣1 + (−𝑘2 + 𝑘1)𝑣2 +  (0)𝑣3 = 0 

(0)𝑣1 + 𝑘2𝑣2 + 𝑘1𝑣3 = 0 

The first equation tells us that 𝑣1 can be any scalar number so we can set that to 1 to for convenience to find 𝑣2 and 
𝑣3. We can rearrange the second and third equation to be: 

𝑣2 =
(−𝑘1)𝑣1

(𝑘1 − 𝑘2) 

𝑣3 =
(−𝑘2)𝑣2

𝑘1
 

Substituting 𝑣1 = 1, we get 𝑣2 = (−𝑘1)
(𝑘1−𝑘2)

 and 𝑣3 = (𝑘2)
 (𝑘1−𝑘2)

 so our eigenvector for λ1 = −𝑘1 is: 

𝒗𝟏 = �
𝑣1
𝑣2
𝑣3
� =

⎣
⎢
⎢
⎢
⎡

1
(−𝑘1)

(𝑘1 − 𝑘2)
(𝑘2)

 (𝑘1 − 𝑘2)⎦
⎥
⎥
⎥
⎤

 



Repeating the same process to find the corresponding eigenvector for λ2 = −𝑘2, we get the following relationships: 

(−𝑘1 + 𝑘2)𝑣1 = 0       𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑣1 = 0  

𝑘1𝑣1 + 0𝑣2 = 0            𝑆𝑖𝑛𝑐𝑒 𝑣1 = 0, 𝑣2 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑛𝑦 𝑠𝑐𝑎𝑙𝑎𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑠𝑜 𝑤𝑒 𝑐ℎ𝑜𝑜𝑠𝑒 1 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑐𝑒 

𝑣3 = −𝑣2                       𝑆𝑖𝑛𝑐𝑒 𝑣2 = 1, 𝑣3 = −1 

So our eigenvector for  λ2 = −𝑘2 is: 

𝒗𝟐 = �
𝑣1
𝑣2
𝑣3
� = �

0
1
−1

� 

Repeating the process once more, we can find the corresponding eigenvector for λ3 = 0. We get the following 
relationships: 

−𝑘1𝑣1 = 0                     𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑣1 = 0  

𝑘1𝑣1 − 𝑘2𝑣2 = 0          𝑆𝑖𝑛𝑐𝑒 𝑣1 = 0, 𝑣2 𝑚𝑢𝑠𝑡 𝑎𝑙𝑠𝑜 = 0 

𝑘2𝑣2 + (0)𝑣3 = 0        𝑆𝑖𝑛𝑐𝑒 𝑣2 = 0, 𝑣3 𝑐𝑎𝑛𝑏𝑒 𝑎𝑛𝑦 𝑠𝑐𝑎𝑙𝑎𝑟 𝑛𝑚𝑏𝑒𝑟 𝑠𝑜 𝑤𝑒 𝑐ℎ𝑜𝑜𝑠𝑒 1 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑐𝑒 

So our eigenvector for  λ3 = 0 is: 

𝒗𝟑 = �
𝑣1
𝑣2
𝑣3
� = �

0
0
1
� 

Now that we have eigenvalues with their eigenvectors, we can write the general solution of  𝑑𝑨
𝑑𝑡

= 𝑩 ∙ 𝑨 
as the superposition of eigenmodes: 
𝑨 = 𝑐1𝑒𝜆1𝑡𝒗𝟏 + 𝑐2𝑒𝜆2𝑡𝒗𝟐 + 𝑐3𝑒𝜆3𝑡𝒗𝟑 

We can then solve for the constants by setting the equation to the initial conditions: 𝑨(0) = �
𝑃0
0
0
�     

and we get 𝑐1 = 𝑃0, 𝑐2 = 𝑃0 �
𝑘1

𝑘1−𝑘2
� , 𝑎𝑛𝑑 𝑐31 = −𝑃0 �

𝑘2−𝑘1
𝑘1−𝑘2

�.  

Substituting our constants back into our equation, the final solutions to the system of differential equations can be 
reduced to: 
P(t)= 𝑃0𝑒−𝑘1𝑡 

C(t)= 𝑃0 �
𝑘1

𝑘2−𝑘1
� (𝑒−𝑘1𝑡 − 𝑒−𝑘2𝑡) 

M(t)= 𝑃0�𝑘2𝑒
−𝑘1𝑡−𝑘1𝑒−𝑘2𝑡�−𝑃0(𝑘2−𝑘1) 

𝑘1−𝑘2
 

We used MATLAB to plot these solutions for t=105 seconds for comparison to our numerical validation done below: 



 
Figure 3. Plot of analytical solutions showing concentration of drug (µm) vs. time (s) in the patch (blue), in 
circulation (green), and being metabolized at the tumor. 
 

 
Numerical Validation 

The following MATLAB code was used to generate an approximate solution to the unsimplified model. 
 

 
The code makes use of another function to insert the system of ODEs into a vector dydt to enhance organization and 
readability. Additionally, we chose to use the ode45 ODE solver instead of ode23. ode45 is a higher order Runge-
Kutta implementation and was recommended by the MATLAB documentation for use before using ode23. 
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Parameters for diffusion, the Michaelis-Menten kinetics, and the initial condition were derived from literature. Using 
cells obtained from human cervix squamous cell carcinoma (SiHa cells), Kyle and Minchinton determined the 
diffusion of tirapazamine in these cells to be 7x10-7 cm2/s, and the Vmax of metabolism within these hypoxic cells to 
be 1.5x10-6 M/s.5 In a related study, Wang, et al. determined Km for tirapazamine to be 74.8 x 10-6 M using a double-
reciprocal plot.6 For modeling purposes, we considered the diffusion through these SiHa cells to be approximately 
equal to that of skin cells where a transdermal patch might be applied. Additionally, we assumed that distribution to 
the second compartment, the circulation, was uniform and occurred immediately after diffusion through skin cells. 
For the initial condition, a Phase III trial of tirapazamine did not provide conclusive data as to the most efficacious 
dose.7 Instead, we used the 14 mg nicotine content of NicoDerm® CQ® patches were used as a reference value. As a 
starting point, we also considered our transdermal patch to have an area of 1 cm2, a thickness of 0.1 cm, and that it 
contained a liquid reservoir of tirapazamine in solution within these dimensions. From these data, and using the 
molecular weight of tirapazamine, we calculated the initial concentration in the patch to be C0 = 0.786 mM. 
 
Substituting the parameters and initial condition in our code, we obtained the following plot. 
 

 
Figure 4. Plot of numerical approximation to the model. As with the plot for the analytical solution, blue represents 
uptake, green represents circulation, and red represents metabolism. 
 
This plot and the plot of the analytical solution are qualitatively identical, which indicates that the approximation of 
the Michaelis-Menten term in the circulation and metabolism equations as a first-order rate constant was 
appropriate. Note that the blue curve, uptake, diminishes to approximately half the initial value in slightly over 11 
days, demonstrating the diffusion-mediated release of tirapazamine over a long time course. The red curve rises 
concurrently as the drug is metabolized into its active form. The green curve is present just above the x-axis. Its 
value is not zero; the tirapazamine concentration in the circulation is instead very low at all times due to the high 
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rate of metabolism in comparison to the diffusion of the drug from the patch. Thus, using the values from the 
literature, tirapazamine prodrug is metabolized into its active form at a much higher rate than it is diffused into the 
blood. 
 
As a pedagogical example, we use our model to illustrate the case where diffusion and metabolism operate on a 
more similar order of magnitude. 

 
Figure 5. Plot of hypothetical drug with comparable rates for diffusion and metabolism.  
 
In this case, the drug concentration in the circulation is shown to reach a clear Cmax before tapering down as the 
initial concentration of the drug is exhausted and metabolized. These dynamics are consistent with pharmacokinetic 
expectations for some drugs. 
 
 

 
Conclusions 

Due to congruence of the drug concentration plots for the numerical and analytical cases, we conclude that the 
approximation of the Michaelis-Menten metabolism term as a first-order rate constant was an appropriate choice. 
 
It is worth noting that the numerical validation conducted here was done only for a single drug and a single delivery 
method. In fact, our model is quite versatile: by altering the relevant parameters, we can conduct in silico 
pharmacokinetic studies on drug delivery and drug metabolism for a number of other compounds. And specifically, 
we can compare the concentration characteristics for different drug delivery methods by altering the k1 constant. We 
only examined the transdermal patch case here, but we can adapt the k1 value to examine the case of continuous 
drug infusion, an IV bolus dose, a drug taken orally, etc.  
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Furthermore, and specifically suited to a bioengineering application, we can adjust our “virtual patch” dimensions 
and drug content by altering the C0 value. This would allow us to compare the pharmacokinetic characteristics of 
various patch sizes and doses to compare their efficacy. 
 
Like many other mathematical models in biology, our model helps demonstrate the power and versatility of in silico 
modeling techniques. With careful design, they can save time and expense and be useful tools in bioengineering and 
medicine. 
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