BENG 221 Mathematical Methods in Bioengineering

Fall 2012

Midterm

NAME: SOLUTIONS

- Open book, open notes.
- 3 hour limit, in one sitting.
- Return hardcopy before closing by 11am, Thursday November 1, 2012.
- No communication on the midterm anytime before closing other than with instructor and TAs.
- No computers or internet during the midterm, except for access to posted class materials and contact with instructor and TAs.
Problem 1 (30 points): The rise and fall of a single bacterial population \(x(t) \) and a single nutrient \(y(t) \) in a petri dish over time \(t \) are modeled by the following set of ordinary differential equations:

\[
\begin{align*}
\frac{dx(t)}{dt} &= g \cdot x(t) + c \cdot y(t) \\
\frac{dy(t)}{dt} &= -d \cdot y(t) - e \cdot x(t) + q(t)
\end{align*}
\]

where \(g \) is the intrinsic bacterial growth rate, \(c \) is the nutrition induced bacterial growth rate, \(d \) is the intrinsic nutrient decay rate, \(e \) is the nutrient consumption rate, and \(q(t) \) is the spontaneous nutrient source generation over time. At time \(t = 0 \) the nutrient is fully depleted and the bacterial population is at an initial level \(x_0 \).

1. (5 points): Write the initial conditions. Are these sufficient to solve for a unique solution?

\[
\begin{align*}
x(0) &= x_0 \\
y(0) &= 0
\end{align*}
\]

\text{YES! (two conditions for two state variables)}

2. (10 points): Find the Laplace transform \(\bar{x}(s) \) of the solution for the bacterial population \(x(t) \) from the initial conditions. Under what condition on the parameters \(g, c, d, \) and \(e \) is the bacteria-nutrient system stable?

\[
\begin{align*}
\{ & \\
S \bar{x}(s) - x_0 &= g \bar{x}(s) + c \bar{y}(s) \\
S \bar{y}(s) - 0 &= -d \bar{y}(s) - e \bar{x}(s) + q(s)
\end{align*}
\]

Eliminate \(\bar{y} \):

\[
\begin{align*}
(S + d) \bar{y} &= -e \bar{x} + \bar{q} \\
(S - g) \bar{x} &= x_0 + c \bar{y} = x_0 + c \bar{y} = x_0 + c \frac{-e \bar{x} + \bar{q}}{s + d}
\end{align*}
\]

\[
((S - g)(S + d) + ce) \bar{x} = (S + d) x_0 + c \bar{q}
\]
\[(s^2 + (d-g)s + (ce-gd)) \tilde{x}(s) = (s+d)x_0 + c\tilde{q}(s)\]

\[\alpha \tilde{x}(s) = \frac{(s+d)x_0 + c\tilde{q}(s)}{s^2 + \alpha s + \beta}\]

where

\[\alpha = d-g\]
\[\beta = ce-gd\]

The system is stable when \(\alpha > 0\) and \(\beta > 0\) or

\[\begin{align*}
&\alpha > g \\
&ce > gd
\end{align*}\]

(OK for the values given in Part 4.)
3. (5 points): Find the Fourier transfer function $H(jw)$ of the system with source input $q(t)$ and bacterial output $x(t)$.

The Fourier transform is the Laplace transform for $s = jw$, without I.C.

$$X(jw) = \frac{C \, \Omega(jw)}{\omega^2 + ajw + b} \quad \text{or} \quad H(jw) = \frac{X(jw)}{\Omega(jw)} = \frac{C}{\omega^2 + ajw + b} \quad \text{with} \quad a = d - g \quad \text{and} \quad \Omega = ce^{-gd}$$

4. (10 points): Find the solution $x(t)$ from initial conditions and zero source $q(t) = 0$ for the following values of the constants: $g = 0$, $c = 1 \, s^{-1}$, $d = 2 \, s^{-1}$, and $e = 1 \, s^{-1}$. Make sure to indicate the units.

$$a = d - g = 2 \, (s^{-1})$$
$$b = ce^{-gd} = 1 \, (s^{-1})$$
$$\hat{q} = 0$$

$$\Rightarrow \quad \hat{x}(s) = \frac{s + 2}{s^2 + 2s + 1} \quad x_0 = \left(\frac{1}{s+1} + \frac{1}{(s+1)^2} \right) x_0$$

Laplace table: \[X(s) = (e^{-t} + t e^{-t}) x_0 \]

\[= (1 + t) e^{-t} x_0 \]

where t is in units seconds (s).
Problem 2 (30 points): Consider the following homogeneous partial differential equation with homogeneous boundary conditions:

\[\frac{\partial}{\partial t} u(x, t) = D \frac{\partial^2}{\partial x^2} u(x, t) \quad \text{with} \quad \begin{cases} u(x, 0) = g(x) \\ u(0, t) = 0 \\ \frac{\partial}{\partial x} u(L, t) = 0 \end{cases} \] \hspace{1cm} (1)

This partial differential equation is approximated using finite differences as:

\[u(x, t + \Delta t) = u(x, t) + \eta \left(u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t) \right) \] \hspace{1cm} (2)

or, equivalently, evaluated on the grid as sequences \(u_i[n] = u(i\Delta x, n\Delta t) \) for integer values of \(i \) and \(n \):

\[u_{i}[n+1] = u_{i}[n] + \eta \left(u_{i+1}[n] - 2u_{i}[n] + u_{i-1}[n] \right), \quad i = 1, \ldots N - 1; n = 0, \ldots \infty. \] \hspace{1cm} (3)

1. (10 points): For length \(L = 1 \) m, diffusivity \(D = 0.01 \) \(m^2/s \) and update constant \(\eta = 0.1 \), find the grid constants \(\Delta x \) and \(\Delta t \) such that your finite difference approximation resolves at least 100 points (\(i = 0, \ldots N = 100 \)) over the \([0, L]\) interval.

\[L = N \Delta x \quad \Rightarrow \quad \Delta x = \frac{L}{N} = \frac{1 \text{ m}}{100} = 0.01 \text{ m} = 1 \text{ cm} \]

\[\eta = D \frac{\Delta t}{\Delta x^2} \quad \Rightarrow \quad \Delta t = \eta \frac{\Delta x^2}{D} = \frac{\eta L^2}{N^2 D} = \frac{0.1 \text{ m}^2}{10,000 \cdot 0.01 \text{ m}^2/s} = 0.01 \text{ s} \approx 1 \text{ ms} \]

2. (5 points): Write the finite difference approximation to the initial conditions at \(t = 0 \), in terms of \(u_i[0] \), for given \(g_i = g(i\Delta x) \).

\[u_i[0] = g_i, \quad i = 1, 2, \ldots, N-1 (, N) \]
3. (5 points): Write the finite difference approximation to the boundary condition at $x = 0$, in terms of $u_0[n]$.

$$u_0[n] = 0, \quad n = 0, 1, \ldots \infty$$

4. (10 points): Write the finite difference approximation to the boundary condition at $x = L$, in terms of $u_N[n]$ and its neighbors on the grid.

$$u(L, t + \Delta t) = u(L, t) + \frac{\Delta t}{\Delta x} \left(-D \frac{u(L, t) - u(L - \Delta x, t)}{\Delta x} + D \frac{\partial}{\partial x} u(L, t) \right)$$

INFLUX from the left

OUTFLUX to the right

$= 0$ because of

B.C.

$$\Rightarrow \quad u_{N}[n+1] = u_{N}[n] + \eta \left(u_{N-1}[n] - u_{N}[n] \right),$$

$$n = 0, 1, \ldots \infty$$
5. **BONUS** (10 extra points, no partial credit—only pursue this if you have time left after completing everything else): Write the finite difference approximations to the non-homogeneous partial differential equation with non-homogeneous boundary conditions:

\[
\frac{\partial}{\partial t} u(x, t) = D \frac{\partial^2}{\partial x^2} u(x, t) + q(x, t) \quad \text{with} \quad \begin{cases}
 u(x, 0) = g(x) \\
 u(0, t) = h(t) \\
 \frac{\partial u}{\partial x}(L, t) = f(t)
\end{cases}
\]

(4) in terms of \(u_i[n] \) for given \(g_i \) as defined above, and given \(q_i[n] = q(i\Delta x, i\Delta t) \), \(h_0[n] = h(n\Delta t) \), and \(f_0[n] = f(n\Delta t) \). Indicate the range of valid indices \(i \) and \(n \) for each equation including initial/boundary conditions.

- **PDE:** \(u_i[n+1] = u_i[n] + \eta (u_{i+1}[n] - 2u_i[n] + u_{i-1}[n]) + \Delta t q_i[n] \), \(i = 1, 2, \ldots, N-1 \)
 \(m = 0, 1, \ldots, \infty \)

- **I.C. @ t=0:** \(u_i[0] = g_i \), \(i = 1, 2, \ldots, N \)

- **B.C. @ x=0 (VALUE):** \(u_0[n] = h_0[n] \), \(i = 0 \)
 \(n = 0, 1, \ldots, \infty \)

- **B.C. @ x=L (FLUX):** \(u_N[n+1] = u_N[n] + \eta (u_{N-1}[n] - u_N[n]) + \Delta x f_0[n] + \Delta t q_i[n] \), \(i = N-1 \)
 \(n = 0, 1, \ldots, \infty \)
Problem 3 (40 points): Oxygen diffuses in a slice preparation of brain tissue of thickness $L = 1 \text{ mm}$ with diffusivity $D = 1 \text{mm}^2 / \text{s}$. The slice is perfused with oxygenated solution generating constant and equal (opposing) influx of oxygen $\Phi_{ox} = 0.1 \text{ \mu mol / mm}^2 \text{s}$ on both sides, into the tissue. Oxygen is consumed by the tissue at a constant rate $R = 0.2 \text{ \mu mol / mm}^3 \text{s}$. At initial time $t = t_0$, the oxygen concentration is $u_0 = 1 \text{ \mu mol / mm}^3$ uniform inside the tissue.

1. (10 points): Write down the partial differential equation with initial and boundary conditions for oxygen concentration $u(x, t)$ in the tissue. Verify consistency in the units.

\[
\text{PDE} : \quad \frac{\partial}{\partial t} u(x,t) = D \frac{\partial^2}{\partial x^2} u(x,t) - R
\]

\[
\frac{1}{S} \quad \frac{\text{\mu mol}}{\text{mm}^3} = \frac{1}{S} \quad \frac{\text{\mu mol}}{\text{mm}^2} = \frac{\text{\mu mol}}{\text{mm}^3 \text{S}} \quad \text{OK!}
\]

\[
\text{I.C. @ t_0} : \quad u(x, t_0) = u_0
\]

\[
\frac{\text{\mu mol}}{\text{mm}^3} = \frac{\text{\mu mol}}{\text{mm}^3} \quad \text{(OK)}
\]

\[
\text{FLUX B.C. @ 0} : \quad -D \frac{\partial}{\partial x} u(0, t) = \Phi_{ox}
\]

\[
\frac{1}{S} \quad \frac{1}{\text{mm}} \quad \frac{\text{\mu mol}}{\text{mm}^3} = \frac{\text{\mu mol}}{\text{mm}^2 \text{S}} \quad \text{OK!}
\]

\[
\text{FLUX B.C. @ L} : \quad -D \frac{\partial}{\partial x} u(L, t) = -\Phi_{ox}
\]

\[
\text{(SAME UNITS)}
\]
2. (10 points): Solve a modified version of this problem, for the homogeneous partial differential equation with homogeneous boundary conditions and initial conditions $u(x, t_0) = \delta(x - x_0)$. What does this solution represent, and why is finding this solution useful in solving the original problem?

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} \quad \text{with} \quad \left\{ \begin{array}{l}
u(x, t_0) = \delta(x - x_0) \\ \frac{\partial u}{\partial x}(0, t) = 0 \\ \frac{\partial u}{\partial x}(L, t) = 0 \end{array} \right.$$

Solution is the Green's function $G(x, t; x_0, t_0)$

Separation of variables:

$$u(x, t) = \sum_{n=0}^{\infty} A_n \cos \left(\frac{\pi n}{L} x \right) e^{-\left(\frac{\pi n}{L} \right)^2 D t}$$

I.C @ t_0:

$$u(x, t_0) = \delta(x - x_0) = \sum_{n=0}^{\infty} A_n \cos \left(\frac{\pi n}{L} x \right) e^{-\left(\frac{\pi n}{L} \right)^2 D t_0}$$

Orthogonality in the basic functions $\cos \left(\frac{\pi n}{L} x \right)$:

$$\left\{ \begin{array}{l}
A_0 = \frac{1}{L} \\
A_n = \frac{2}{L} \cos \left(\frac{\pi n}{L} x_0 \right) e^{+\left(\frac{\pi n}{L} \right)^2 D t_0}, \quad n = 1, 2, \ldots \infty
\end{array} \right.$$

$$\Rightarrow \quad G(x, t; x_0, t_0) = \frac{1}{L} + \frac{2}{L} \sum_{n=1}^{\infty} \cos \left(\frac{\pi n}{L} x_0 \right) \cos \left(\frac{\pi n}{L} x \right) e^{-D \left(\frac{\pi n}{L} \right)^2 (t-t_0)}$$

Why? See 4. (OK to use the Green's Table)
3. (10 points): Find a particular (steady-state) solution \(u_p(x) \) to the original problem (but disregarding the initial conditions) that does not depend on time. Find the conditions on the parameters \(L, D, \Phi_{ox} \), and \(R \) for such solution to exist. Is the solution unique? Why is finding this solution useful in solving the original problem?

\[
D \frac{d^2}{dx^2} M_p(x) - R = 0 \quad \text{with} \quad \begin{cases}
-D \frac{d}{dx} M_p(0) = \Phi_{ox} \\
-D \frac{d}{dx} M_p(L) = -\Phi_{ox}
\end{cases}
\]

Integrating twice:

\[
M_p(x) = \frac{R}{2D} x^2 + ax + b \quad \text{where} \ a \ \text{and} \ b \ \text{are integration constants}.
\]

B.C. on flux:

\[
\begin{align*}
\text{at} \ x = 0: & \quad -Da = \Phi_{ox} \quad \Rightarrow \quad a = -\frac{\Phi_{ox}}{D} \\
\text{at} \ x = L: & \quad -RL - Da = -\Phi_{ox} \quad \Rightarrow \quad RL = 2\Phi_{ox} \quad \Rightarrow
\end{align*}
\]

A solution can only exist if \(\Phi_{ox} = \frac{1}{2} RL \).

Ok for the values given: \(0.1 \ \mu\text{mol} / \text{mm}^2 \text{s} = \frac{1}{2} \ 0.2 \ \mu\text{mol} / \text{mm}^3 \text{s} \cdot 1 \ \text{mm} \)

The solution is NOT unique because \(b \) is left undetermined.

\[
M_p(x) = \frac{R}{2D} x^2 - \frac{\Phi_{ox}}{D} x + b, \quad \text{for arbitrary} \ b
\]

\[
= \frac{R}{2D} x^2 - \frac{RL}{2D} x + b
\]

\[
= -\frac{R}{2D} x(L-x) + b
\]

4. (10 points): Now find the full solution \(u(x,t) \) to the original problem from the initial conditions.

Poisson's tenth method with \(M_p(x) \) and \(G(x,t) \): \((3.0) \)

\[
m(x,t) = M_p(x) + M_H(x,t)
\]

where:

\[
\frac{\partial}{\partial t} M_H(x,t) = \frac{D}{\alpha^2} \frac{\partial^2}{\partial x^2} M_H(x,t) \quad \text{and} \quad \begin{cases} M_H(x,0) = M_0 - M_p(x) \\ \frac{\partial M_H}{\partial x}(0,t) = 0 \\ \frac{\partial M_H}{\partial x}(L,t) = 0 \end{cases}
\]

or \(M_H(x,t) = \int_{0}^{L} G(x,t; x_0, t) (M_0 - M_p(x_0)) \, dx_0 \)

\(\text{Green's @ t} \quad \text{m_H I.C. @ t} \)

where \(M_0 - M_p(x_0) = M_0 - b_0 + \frac{R}{2D} x_0 (L-x_0) \)

Equivalently:

\[
M_H(x,t) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi}{L} x\right) e^{-\left(\frac{n\pi}{L}\right)^2 D(t-t_0)}
\]

where \(A_0 = \frac{1}{L} \int_{0}^{L} (M_0 - b_0 + \frac{R}{2D} x_0 (L-x_0)) \, dx_0 \)

\[
A_n = \frac{2}{L} \int_{0}^{L} (M_0 - b_0 + \frac{R}{2D} x_0 (L-x_0)) \cos\left(\frac{n\pi}{L} x_0\right) \, dx_0,
\]

\(n = 1, 2, \ldots, \infty \)
\[A_0 = \frac{1}{L} \int_0^L \left(\mu_0 - b + \frac{R}{2D} \ x_0 (L-x_0) \right) \, dx_0 \]

\[= \mu_0 - b + \frac{R}{2DL} \int_0^L x_0 (L-x_0) \, dx_0 \]

\[\left[\frac{x_0^2 L}{2} - \frac{x_0^3}{3} \right]_0^L = \left(\frac{1}{2} - \frac{1}{3} \right) L^3 = \frac{1}{6} L^3 \]

\[= \mu_0 - b + \frac{RL^2}{12D} \left(\frac{\mu_0}{mm^3/s^2} \cdot \frac{m^2}{mm^2} = \frac{\mu_0}{mm^3} \right) \]

\[A_n = \frac{2}{L} \int_0^L \left(\mu_0 - b + \frac{R}{2D} \ x_0 (L-x_0) \right) \cos \left(\frac{\pi m x_0}{L} \right) \, dx_0 \]

\[= \frac{2}{L} \frac{L}{\pi m} \left[\left(\mu_0 - b + \frac{R}{2D} \ x_0 (L-x_0) \right) \sin \left(\frac{\pi m}{L} x_0 \right) \right]_0^L \]

\[- \int_0^L \frac{R}{2D} \ (L - 2x_0) \sin \left(\frac{\pi m x_0}{L} \right) \, dx_0 \]

\[= \frac{R}{DL} \left(\frac{L}{\pi m} \right)^2 \left[\left(L - 2x_0 \right) \cos \left(\frac{\pi m x_0}{L} \right) \right]_0^L - \int_0^L \left(-2 \right) \cos \left(\frac{\pi m x_0}{L} \right) \, dx_0 \]

\[= \frac{R L}{D \pi^2 m^2} \left(L + L (-1)^n \right) = \begin{cases} \frac{2RL^2}{\pi^2 D m^2} & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd} \end{cases} \]

\[\Rightarrow \mu(x,t) = \mu_p(x) + \mu_H(x,t) = \]

\[- \frac{R}{2D} \ x_0 (L-x_0) + b + \mu_0 - b + \frac{RL^2}{12D} \]

\[+ \sum_{n=2,4,6,\ldots}^{\infty} \frac{2RL^2}{\pi^2 D m^2} \cos \left(\frac{\pi m}{L} x \right) e^{-\left(\frac{\pi m}{L} \right)^2 D (t-t_0)} \]