
BENG 221 Mathematical Methods in Bioengineering

Lecture 4
Tutorial
Analytic and Numerical Methods in ODEs

Class notes
Gert Cauwenberghs, Dept. of Bioengineering, UC San Diego

4.1

Overview

Summary
We will review analytic and numerical techniques for solving ODEs, using pencil and

paper, and implemented in Matlab. These simple techniques lay the foundations for solving
more complex systems of PDEs in the coming weeks.

By way of example we study the dynamics of a ring oscillator, a circular chain of three
inverters with identical capacitive loading. 4.2

Contents

1 Example: Ring Oscillator Dynamics 1

2 Analytic ODE Solution 2

3 Numerical Verification 5

4 Numerical Simulation 6 4.3

1 Example: Ring Oscillator Dynamics

Some circuit elements

iout = g(vin)≈−Gvin (1)

v =
Q
C

=
1
C

∫ t

−∞

i dt (2)
4.4

1

Figure 1: An inverting transconductor (inverter) converts and input voltage to an output
current, with gain −G.

Figure 2: A capacitor converts charge, or integrated current, to voltage with gain 1/C.

Ring Oscillator

C
dv1

dt
= g(v3)≈−G v3

C
dv2

dt
= g(v1)≈−G v1 (3)

C
dv3

dt
= g(v2)≈−G v2

v1(0) = v10

v2(0) = v20 (4)

v3(0) = v30

4.5

2 Analytic ODE Solution

Eigenvalues
Ring oscillator ODE dynamics in matrix notation:

dv
dt

= Av v(0) = v0 (5)

with

v =

 v1
v2
v3

 A =

 0 0 −1
−1 0 0

0 −1 0

 v(0) =

 v10
v20
v30

 (6)

2

Figure 3: A 3-inverter ring oscillator with capacitive loading.

where G/C ≡ 1 with no loss of generality.

Eigenvectors xi and corresponding eigenvalues λi of A satisfy A xi = λi xi, or det(A −
λi I) = 0, which reduces to λi

3 +1 = 0, with three solutions:

λi = (−1)
1
3 =


−1

e+ jπ/3 = 1
2 + j

√
3

2
e− jπ/3 = 1

2 − j
√

3
2

(7)

4.6

Eigenvectors
The corresponding eigenvectors are:

λ1 = −1 : x1 = 1√
3

 1
1
1


λ2 = e+ jπ/3 = 1

2 + j
√

3
2 : x2 = 1√

3

 1
e+ j2π/3

e− j2π/3


λ3 = e− jπ/3 = 1

2 − j
√

3
2 : x3 = 1√

3

 1
e− j2π/3

e+ j2π/3


(8)

The eigenvectors form a complex orthonormal basis:

xi
∗ x j = δi j, i, j = 1, . . .3 (9)

where xi
∗ is the complex conjugate transpose of xi. 4.7

Eigenmodes

3

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

t

IC: (1 1 1)

v1
v2
v3

Figure 4: Ring oscillator ODE solution for v(0) = (1,1,1)T .

The general solution is the superposition of eigenmodes (see Lecture 1):

v =
3

∑
i=1

ci xi eλit

= c1 e−t 1√
3

 1
1
1

+ (10)

c2 e
1
2 t e j

√
3

2 t 1√
3

 1
e+ j2π/3

e− j2π/3

+

c3 e
1
2 t e− j

√
3

2 t 1√
3

 1
e− j2π/3

e+ j2π/3


v(t) is real, and so c2 and c3 must be complex conjugate. Therefore, the second and third
eigenmodes are oscillatory with an exponentially rising carrier. The first eigenmode is a
decaying exponential common-mode transient. 4.8

First Eigenmode– Common-mode Decaying Exponential 4.9

Second/third Eigenmode– Exponentially Rising Three-phase Oscillations 4.10

Initial Conditions

4

0 1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

t

IC: (1 −0.5 −0.5)

v1
v2
v3

Figure 5: Ring oscillator ODE solution for v(0) = (1,−1
2 ,−

1
2)

T .

The IC constrained solution is obtained by virtue of the orthonormality of the eigenvec-
tors (see also Lecture 1):

v =
n

∑
i=1

x∗i v(0) xi eλit (11)

which, using the identity e+ jα + e− jα = 2 cos(α), leads to:

v1 =
e−t

3
(v10 + v20 + v30)+ (12)

2 et/2

3
(v10 cos(

√
3

2
t)+

v20 cos(

√
3

2
t +

2π

3
)+ v30 cos(

√
3

2
t− 2π

3
))

and identical expressions for v2 and v3 under ordered permutation of the indices (consistent
with the ring symmetry). 4.11

3 Numerical Verification

Matlab Implementation
Using the eigenvector-eigenvalue decomposition of A in matrix form:

A X = X s (13)

where X = (x1,x2,x3) and s = diag(λ1,λ2,λ3), the solution (11) can be expressed in matrix
form:

v = X diag(X∗ v(0))ediag(s)t (14)

5

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

100

t

IC: (1 0 0)

v1
v2
v3

Figure 6: Ring oscillator ODE solution for v(0) = (1,0,0)T .

for efficient matlab implementation:
[X, s] = eig(A);
V = X * diag(X’ * V0) * exp(diag(s) * t); 4.12

Initial Conditions 4.13

4 Numerical Simulation

Euler Integration
Euler numerical integration produces approximate solutions to:

dx
dt

= f(x(t), t) (15)

at discrete time intervals t = n∆t, by finite difference approximation of the derivative:

dx
dt

(t) =
1
∆t

(x(t +∆t)−x(t))+O(∆t2) (16)

leading to the recursion:
x(t +∆t)≈ x(t)+∆t f(x(t), t). (17)

Matlab Euler example (ring oscillator):
Ve = V0; % Euler approximation, initialize to IC
Vs = V0; % Euler state variable, initialize
for te = tstep:tstep:trange

Vs = Vs + A * Vs * tstep;
Ve = [Ve, Vs];

end 4.14

6

0 1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

150

t

IC: (1 0 0)

v1
v2
v3

Figure 7: Ring oscillator ODE simulation using Euler integration.

Euler Integration 4.15

Crank-Nicolson Integration
Better numerical ODE methods exist that use higher-order finite difference approxima-

tions of the derivative. Crank-Nicolson is a second order method that approximates (15)
more accurately using a centered version of the finite difference approximation of the deriva-
tive:

dx
dt

(t +
∆t
2
) =

1
∆t

(x(t +∆t)−x(t))+O(∆t3) (18)

leading to a recursion:

x(t +∆t) ≈ x(t)+∆t f(x(t +
∆t
2
), t +

∆t
2
)

≈ x(t)+
∆t
2
(f(x(t), t)+ f(x(t +∆t), t +∆t)). (19)

Matlab CN example (ring oscillator):
G = (eye(3) - A * tstep / 2) \ (eye(3) + A * tstep / 2);
Vc = V0; % CN approximation, initialize to IC
Vs = V0; % CN state variable, initialize
for te = tstep:tstep:trange

Vs = G * Vs;
Vc = [Vc, Vs];

end 4.16

Crank-Nicolson Integration 4.17

7

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

100

t

IC: (1 0 0)

v1
v2
v3

Figure 8: Ring oscillator ODE simulation using Crank-Nicolson integration.

Higher-Order Integration
Crank-Nicolson (19) is implicit in that the solution at time step t +∆t is recursive in the

state variable x(t+∆t), rather than forward e.g., given in previous values of the state variable
x(t). More advanced methods, such as Runge-Kutta and several of Matlab’s built-in ODE
solvers, are explicit and/or higher order, allowing faster integration although possibly at the
expense of numerical stability.

Matlab ode23 example (ring oscillator):
OdeOptions = odeset(’RelTol’, 1e-9); % accuracy, please
dVdt = @(t,V) A * V;
[tm, Vm] = ode23(dVdt, [0 trange], V0); 4.18

Explicit Forward Second-Order Integration 4.19

Matlab Built-in ode23 Solver 4.20

Further Reading

Bibliography

References

[1] R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary
Value Problems, 4th Ed., 2004, Ch. 6.

8

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

100

t

IC: (1 0 0)

v1
v2
v3

Figure 9: Ring oscillator ODE simulation using an explicit version of Crank-Nicolson
integration using a forward series expansion up to second order.

[2] Wikipedia, Conjugate Transpose, http://en.wikipedia.org/wiki/
Conjugate_transpose.

[3] Wikipedia, Numerical Ordinary Differential Equations, http://en.wikipedia.
org/wiki/Numerical_ordinary_differential_equations.

[4] Wikipedia, Runge Kutta Methods, http://en.wikipedia.org/wiki/
Runge-Kutta_methods.

4.21

9

http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
http://en.wikipedia.org/wiki/Runge-Kutta_methods
http://en.wikipedia.org/wiki/Runge-Kutta_methods
http://en.wikipedia.org/wiki/Runge-Kutta_methods
http://en.wikipedia.org/wiki/Runge-Kutta_methods

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

100

t

IC: (1 0 0)

v1
v2
v3

Figure 10: Ring oscillator ODE simulation using the Matlab built-in ode23 numeric ODE
solver.

10

	Example: Ring Oscillator Dynamics
	Analytic ODE Solution
	Numerical Verification
	Numerical Simulation

