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BENG 221 
M. Intaglietta 
Lecture 9 
Time dependent solution of the heat/diffusion equation 
 
 
Derivation of the diffusion equation 
 
 The diffusion process is describe empirically from observations and 
measurements showing that the flux of the diffusing material Fx in the x direction is 
proportional to the negative gradient of the concentration C in the same direction, or: 
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where D, the diffusion constant, is a coefficient that may be constant, or a function of 
time, location and concentration.   
 

With reference to Figure 1, the flux of material through the face of the element of 
volume at x, minus the flux through the face at x + dx equals the rate at which the 
concentration changes in the volume, assuming that fluxes occur only in the x-direction, 
or: 
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Figure 1.  Flux balance along the x-direction in a region of space described in Cartesian 
coordinates.    
 
This can be readily extended to effects in all directions yielding: 
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And applying (1) we obtain: 
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which in the nomenclature of vector analysis is expressed by: 
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Solution for constant diffusion coefficient from a plane source 
 
 Straight forward differentiation shows that:  
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is a solution of: 
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This solution for C is symmetrical relative to x = 0, tends to 0 as x tends to 

infinity, and is everywhere zero for t = 0, except for x = 0 where it is infinite.  This 
solution shows the concentration of the diffusing material originating from a plane source 
with an amount of material M at zero time.  The diffusing material is not consumed and 
the amount of material is constant at all times.  To evaluate A we assume that material is 
diffusing in an infinite cylinder from a plane located at x = 0.  Mass balance requires that 
for all times: 
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Changing variables and substituting in 3 and 5: 
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and substituting A in 3 we obtain: 
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 In this solution half of the material diffuses in the positive x direction and the 
other half in the negative x.  This solution is also valid for a semi infinite cylinder where 
diffusion takes place in the positive x-direction only from a plane located at x = 0.  
Clearly the concentration will be double of that of the infinite cylinder.  In this case we 
indicate that the solution is reflected at the boundary and superposed.  Note that the 
gradient of concentration at x = 0 is zero in both cases, indicating that in either case no 
material crosses the plane source (or boundary). 
 
Diffusion from a finite region consisting of a volume source 
 
 The solution for the diffusion of material occupying a volume in space can be 
obtained by assuming that the region is composed of an infinite number of plane sources 
and superposing the infinite number of related solutions.  This problem describes effects 
taking place in an infinite cylinder filled with water, where the concentration of a solute 
is C = Co for x < 0, C = 0 for x > 0, t = 0.  Consider in the geometry of Figure 2 a plane 
of unit surface area containing diffusible material in a quantity Codξi located at ξi 
according to 5 will produce a distribution of concentration at any time t given by: 
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Figure 2.  Material at a concentration Co occupies the region along the negative x-axis.   
 
Therefore the effect due to the infinite number of planes at any given time t is obtained 
by adding the effect of each plane solution from 0 to - ∞ or: 
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and making the substitution of variables: 
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Changing variables and limits of integration in 7 we obtain: 
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Substituting in 7 we obtain: 
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Note that: 
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Diffusion from and in confined regions  
 

The methods described allow to describe diffusion from a substance confined 
between –h < x < h along the x-axis.  Solution of this problem gives the concentration in 
terms of: 
 

0
1( , )
2 4 4

h x h xC x t C erf erf
Dt Dt
− +⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

 
This solution is symmetrical about x = 0 therefore the system can be cut in half, 

providing the solution for the semi-infinite system. 

One dimensional diffusion from a finite system into a finite system that extends 
up to x = l can be analyzed by the method of reflection and superposition, where in this 



case the reflection (and superposition) occurs at x = l and x = 0.  In this system the 
solution reflected at x = l is reflected again at x = 0, at infinitum, resulting in an infinite 
series of error functions, namely: 
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 This solution is useful for calculating the distribution of concentration at early 
times, when the series converges rapidly.  A solution of this type can also be obtained 
using the Laplace transform.   
 
 
Non-dimensionalization of the diffusion equation 
 

Given the diffusion equation in one dimension (4) over a one dimensional region 
of total length L we introduce a non-dimensional spatial coordinate as the ratio  x = x’L 
so that the diffusion equation becomes: 
 

2 2

2 2( )
C C DD
t Lx L

∂ ∂ ∂
= =

∂ ∂ ′ ∂ 2

C
x′

 

 
We can also define a non-dimensional time as t = t’t0 where t0 is an arbitrary time scale; 
the new equation is: 
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Therefore setting t0 = L2/D the diffusion equation becomes: 
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This result indicates that all diffusion problems are the same.  This requires 

scaling the geometry so that the basic dimension ranges from zero to one.  The 
combination of the size and the diffusivity yield the appropriate time unit.  On the scaled 
domain and in the proper time units, problems of different size and diffusion constants 
will have the same solution.  Thus solving the diffusion equation for one set of boundary 
conditions solves it for all cases.  As an example the time that it takes for diffusion to 
change concentration by a given amount is directly proportional to the size of its principal 
dimension.  Thus doubling its size quadruples the time. 
 




