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1.2

Course Objectives

1. Acquire methods for quantitative analysis and prediction of
biophysical processes involving spatial and temporal
dynamics:

I Derive partial differential equations from physical principles;
I Formulate boundary conditions from physical and operational

constraints;
I Use engineering mathematical tools of linear systems

analysis to find a solution or a class of solutions;

2. Learn to apply these methods to solve engineering problems
in medicine and biology:

I Formulate a bioengineering problem in quantitative terms;
I Simplify (linearize) the problem where warranted;
I Solve the problem, interpret the results, and draw conclusions

to guide further design.

3. Enjoy!
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1.3

Today’s Coverage:

Ordinary Differential Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions
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1.4

ODE Problem Formulation

Solve for the dynamics of n variables x1(t), x2(t), . . . xn(t) in time
(or other ordinate) t described by m differential equations:

ODE

Fi

(
x1,

dx1

dt
, . . .

dk x1

dtk , . . .

x2,
dx2

dt
, . . .

dk x2

dtk , . . . (1)

xn,
dxn

dt
, . . .

dk xn

dtk

)
= 0

for i = 1, . . .m, where m ≤ n and k ≤ n. Solutions are generally
not unique. A unique solution, or a reduced set of solutions, is
determined by specifying initial or boundary conditions on the
variables.
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1.5

ODE Examples

Kinetics of mass m with potential V (x):

1
2

m
(

dx
dt

)2

+ V (x) = 0 (2)

Two masses with coupled potential V (x):

1
2

m1

(
dx1

dt

)2

+
1
2

m2

(
dx2

dt

)2

+ V (x1, x2) = 0 (3)

Second order nonlinear ODE:

x
d2x
dt2 =

1
2

(
dx
dt

)2

(4)
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1.6

ODE in Canonical Form

In canonical form, a set of n ODEs specify the first order
derivatives of each of n single variables in the other variables,
without coupling between derivatives or to higher order
derivatives:

Canonical ODE

dx1

dt
= f1(x1, x2, . . . xn)

dx2

dt
= f2(x1, x2, . . . xn) (5)

...
dxn

dt
= fn(x1, x2, . . . xn).

Not every system of ODEs can be formulated in canonical form.
An important class of ODEs that can be formulated in canonical
form are linear ODEs.
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1.7

Canonical ODE Examples

Amplitude stabilized quadrature oscillator:{ dx
dt = −y − (x2 + y2 − 1) x
dy
dt = x − (x2 + y2 − 1) y

(6)

Any first-order canonical ODE without explicit time dependence
can be solved by separation of variables, e.g.,

dx
dt

= (1 + x2)/x (7)
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1.8

Initial and Boundary Conditions

Initial conditions are values for the variables, and some of their
derivatives of various order, specified at one initial point in time
t0, e.g., t = 0:

IC

d ixj

dt i (0) = cij , i = 0, . . .m, j = 1, . . .n. (8)

Boundary conditions are more general conditions linking the
variables, and/or their first and higher derivatives, at one or
several points in time tk :

BC

gl (. . . ,
d ixj

dt i (tk ), . . .) = 0. (9)
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1.9

ICs in Canonical Form

For ODEs in canonical form, initial conditions for each of the
variables are specified at initial time t0, e.g., t = 0:

Canonical IC

x1(0) = c1

x2(0) = c2 (10)
...

xn(0) = cn

ICs for first or higher order derivatives are not required for
canonical ODEs.
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1.10

Linear Canonical ODEs

Linear time-invariant (LTI) systems can be described by linear
canonical ODEs with constant coefficients:

LTI ODE

dx
dt

= A x + b (11)

with x = (x1, . . . xn)T , and with linear initial conditions:

LTI IC

x(0) = e (12)

or linear boundary conditions at two, or more generally several,
time points:

LTI BC

C x(0) + D x(T ) = e (13)
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1.11

LTI Systems ODE Examples

Examples abound in biomechanical and electromechanical
systems (including cardiovascular system, and MEMS
biosensors), and more recently bioinformatics and systems
biology.
A classic example is the harmonic oscillator (k = 0), and more
generally the damped oscillator or resonator:{ du

dt = v
m dv

dt = −k u − γ v + fext
(14)

where u represents some physical form of deflection, and v its
velocity. Typical parameters include mass/inertia m, stiffness k ,
and friction γ. The inhomogeneous term fext represents an
external force acting on the resonator.
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1.12

LTI Homogeneous ODEs

In general, LTI ODEs are inhomogeneous. Homogeneous LTI
ODEs are those for which x ≡ 0 is a valid solution. This is the
case for LTI ODEs with zero driving force b = 0 and zero IC/BC:

LTI Homogeneous ODE

dx
dt

= A x (15)

LTI Homogeneous IC

C x(0) = 0 (16)

LTI Homogeneous BC

C x(0) + D x(T ) = 0. (17)

Eigenmodes, arbitrarily scaled non-trivial solutions x 6= 0, exist
for under-determined IC/BC (rank-deficient C and D).
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1.13

Eigenmode Analysis

Eigenvalue-eigenvector decomposition of the matrix A yields the
eigenmodes of LTI homogeneous ODEs. Let:

A xi = λi xi (18)

with eigenvectors xi and corresponding eigenvalues λi . Then

Eigenmodes

x(t) = ci xi eλi t (19)

are eigenmode solutions to the LTI homogeneous ODEs (15) for
any scalars ci . There are n such eigenmodes, where n is the
rank of A (typically, the number of LTI homogeneous ODEs).
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1.14

Orthonormality and Inhomogeneous IC/BCs

The general solution is expressed as a linear combination of
eigenmodes:

x(t) =
n∑

i=1

ci xi eλi t (20)

For symmetric matrix A (Aij = Aji ) the set of eigenvectors xi is
orthonormal:

xT
i xj = δij (21)

so that the solution to the homogeneous ODEs (15) with
inhomogeneous ICs (12) reduces to ci = xT

i x(0), or:

LTI inhomogenous IC solution (symmetric A)

x(t) =
n∑

i=1

xT
i x(0) xi eλi t (22)



BENG 221

Lecture 1
Introduction

Overview

Ordinary
Differential
Equations

Linear
Time-Invariant
Systems

Eigenmodes

Convolution and
Response
Functions

Further Reading

1.15

Superposition and Time-Invariance

Linear time-invariant (LTI) homogeneous ODE systems satisfy
the following useful properties:

LTI ODE

1. Superposition: If x(t) and y(t) are solutions, then
A x(t) + B y(t) must also be solutions for any constant A
and B.

2. Time Invariance: If x(t) is a solution, then so is x(t + ∆t) for
any time displacement ∆t .

An important consequence is that solutions to LTI
inhomogeneous ODEs are readily obtained from solutions to the
homogeneous problem through convolution. This observation is
the basis for extensive use of the Laplace and Fourier transforms
to study and solve LTI problems in engineering.
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1.16

Impulse Response and Convolution

Let h(t) the impulse response of a LTI system to a delta Dirac
function at time zero:

dh
dt

= L(h) + δ(t) (23)

then, owing to the principle of superposition and time invariance,
the response u(t) to an arbitrary stimulus over time f (t)

du
dt

= L(u) + f (t) (24)

is given by:

Convolution

u(t) =

∫ +∞

−∞
f (θ) h(t − θ) dθ. (25)
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1.17

Fourier Transfer Function

Linear convolution in the time domain (25)

u(t) =

∫ +∞

−∞
f (θ) h(t − θ) dθ

transforms to a linear product in the Fourier domain:

U(jω) = F (jω) H(jω) (26)

where

U(jω) = F(u(t)) =

∫ +∞

−∞
u(θ) e−jωθ dθ (27)

is the Fourier transform of u.
The transfer function H(jω) is the Fourier transform of the
impulse response h(t).
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1.18

Laplace Transfer Function

For causal systems

h(t) ≡ 0 for t < 0 (28)

the identical product form (26)

U(s) = F (s) H(s) (29)

holds also for the Laplace transform

U(s) = L(u(t)) =

∫ +∞

0
u(θ) e−sθ dθ (30)

where s = jω.
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