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BENG 221 
M. Intaglietta 
 
 
Diffusion 
 

Diffusion occurs when a system is not in equilibrium and random molecular 
motion causes the system to become uniform in its properties, such as the distribution of 
material, thermal energy and charge.  We tend to assume that diffusion is associated with 
cooling or heating, and the mixing of fluids, however diffusion is seldom the dominant 
mechanism.  Bulk motion of the fluid is the cause of most of the mixing effects that we 
experience in liquids and gases.  While diffusion is important in the detail of these 
processes, convection is what we most often experience.  Were it not for convective 
motions in the air it would take one year to smell our feet after taking off our shoes due to 
molecular diffusion.  It is the stirring of milk in the coffee that mixes it; molecular 
diffusion would take so long that the drink would long spoil and evaporate before it was 
mixed. 

 
The most common example of diffusion in our everyday experience, is the 

diffusion of heat in a solid.  However, at the microscopic level, cells are fundamentally 
dependant on the process of diffusion to absorb and reject materials from and into the 
environment, particularly in the immediate proximity of their membranes where 
convection become very small as a consequence of the no slip condition imposed by solid 
boundaries to the motion of their surrounding fluid. 

 
A common form of diffusion is viscosity, which determines how momentum 

diffuses in fluid flow.  The diffusion of momentum generally a small effect compared to 
the effects due to fluid inertia.  In breathing and swimming we are not particularly aware 
of the consequent drag effect due to viscosity.  However cellular organism live in a world 
where viscous diffusion is the dominant effect (see “Life at Low Reynolds Number”, 
Purcell 1976).  Viscosity is a fundamental hydrodynamic property of fluids that 
determines the existence of boundary layers, which are the critical element for avoiding 
metal to metal contact all rotating mechanism and thus maintaining the integrity of their 
surfaces.  
 

Diffusion processes are irreversible and do not run backwards.  Diffusion 
processes are intimately related to entropy, irreversibility, and probability.  

  
Brownian motion 
 
 The motion of a particle suspended in a viscous fluid results from fluctuating forces 
which are the consequence of collisions with molecules of the fluid.  As an example a sphere of 1 
µm in diameter in air is subjected to 1016 collisions per second.  The details of Brownian 
movement cannot be predicted exactly, however, we may assume that the events (collisions, 
displacements, etc.) are random.  Therefore even though we cannot know the details of the 
phenomenon, we can determine the average behavior. 
 



Theory for one dimensional displacement 
 
 Let us analyze the displacements of a particle of mass m along the x axis as a 
consequence of the action of a random force X acting in the x direction.  Both the magnitude and 
sign of X are random.  The velocity of the particle dx/dt and the acceleration d2x/dt2 are opposed 
by a frictional force F, where each of these terms is defined by: 
 

2

2; ;dx d xx x F f x
dt dt

= = =& && &  

 
The frictional force F opposes the action of the force X, where the frictional coefficient f is given 
by: 
 
f = 6πηR                                                                                                                                             1 
 
where η is the viscosity of the medium in which the particle moves and R is the radius of the 
particle (Stokes law).  According to Newton's second law we obtain the equation of motion: 
 
X f x mx− =& &&                                                                                                                                                 2 

 
 We assume that at t = 0 the particle is at the origin x = 0, and we wish to determine what 
will be the average distance <x> that the particle has moved from its staring point as time 
progresses.  A convenient variable that allows tracking the distance from the origin independently 
of the direction of the motion along the x axis is to measure x2, and if we let y = x2, the derivatives 
of this function are: 
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The averages of these functions are: 
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If we multiply equation 2 by x and take the time average we obtain: 
 

=xX f xx m xx< > − < > < >& &&                                                                                                                 5 
 
Comparing equations (5) and (3) we note that we can introduce the variable y into the equation of 
motion by simple substitution and obtain: 
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 The kinetic theory of gases indicates that each molecule has an average kinetic energy 
<KE> given by: 
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where k is Boltzmann's constant whose value is 1.38 x 10-16 ergs/degree and T is the absolute 
temperature.  We make the assumption that the particles in our system have the same kinetic 
energy as that of a gas, and furthermore since the particle under consideration moves only in one 
direction it must have one third of the total average kinetic energy.  The average velocity squared 
is then obtained from (7) to be: 
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Equation (6) can now be integrated by making the substitution given in (8) and noting that the 
term < xX > = 0 since X varies at random.  By making the substitution: 
 

dz y
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we obtain the first order equation: 
 

2dzm fz kT
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whose solution is: 
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where K1 is a constant of integration.  For microscopic particles the term m/f is very small and the 
exponential term vanishes.  It is also shown that this term, which has the units of time, is a 
measure of the time required by a particle to reach its final velocity when acted upon by the force 
X.  Utilizing the definitions of z and x we obtain: 
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and integrating we obtain: 
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where K2 is a constant equal to zero since x = 0 at t = 0.  This result can be extended to motion of 
a particle in three dimensions, since equation (13) holds for each of the 3 Cartesian coordinates, 
therefore the distance r2 = x2 + y2  + z2  from the origin will be three times that given in (13) and 
the actual distance is given by: 
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 This result shows that the average of x squared, i.e., the distance of the particle from its 
initial position increases with time, although in any given moment the displacement may be either 
forward or backward with equal frequency.  This result was derived Einstein in 1906. 
 
Diffusion 
 
 In a suspension all the particles undergo Brownian motion and therefore particles will 
tend to flow from regions of high concentration to ones with low concentration.  This flow is 
termed diffusion and it causes the concentration of a suspension to be uniform. 
 
 The law governing diffusion is obtained experimentally by measuring the flow of 
particles caused by different concentration differences.  The simplest case is that when the 
concentration c varies only along the x direction and it is independent of time t.  Defining J to be 
the number of particles that passes an area A = 1 perpendicular to the concentration gradient, the 
first law of diffusion, termed Fick's First Law of diffusion, is found to be 
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where D is a proportionality constant termed the coefficient of diffusion.  The phenomenon can 
also be described by an equation not involving J.  To obtain this equation consider a region where 
there is a concentration gradient along the x axis, and which is bound by planes at x1 and x2 in 
such a fashion that the flow through these planes are J1 and J2 respectively.  If the J1 and J2 are 
not equal, then the number of particles N in the region will change with time according to: 
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If <c> is the average concentration of the particles in the region then: 
 

2 1( )N x x c= − < >                                                                                                                                    17 
 
Differentiating (17) with respect to time and using equations (15) and (16) we obtain: 
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Transposing (x2 - x1) = ∆x and taking the limit ∆x → 0 we obtain: 
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where the left hand side of (19) is ΜJ/Μx and the right hand side is Μc/Μ t.  Introducing the 
definition of J from Fick's first law we obtain: 
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which is called Fick's second law of diffusion. 
 
Solutions of the diffusion equation 
 
One dimensional steady state diffusion 
 
 Steady state implies that all factors are time independent, therefore Μc/Μ t = 0 
and (17) becomes: 
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whose solution is: 
 

1 2c A x A= +                                                                                                                                                 22 
 
where A1 and A2 are constants.  Given (22) and the first law of diffusion, we have that: 
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which shows that J is a constant.  A1 and A2 are evaluated from specific values of J, D and the 
boundary conditions. 
 
Time dependent diffusion 
 
 A solution of equation (20) is: 
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If we plot this function for different times as a function of x we obtain the time course of 

events for the situation where at time zero the concentration is uniform along the whole x axis, 
and equal to zero.  After this the concentration at x becomes zero for all times, and the 
concentration at x = 0 decreases monotonically with time.  The obtained distribution of c as a 
function of time is equivalent to that observed if we place at time zero a particle source at x = 0.  
 
 A problem to be solved later is that of a uniform distribution of material from x = 0 to 
positive infinity, which is suddenly being consumed at x =  0.  To determine the location xh at 
which the concentration has decreased by half relative to the original value at x = 0 requires 
solving for the value of the exponent in the following equation: 
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From the table of the error function erf 0.48 = 0.50, therefore: 
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The diffusion coefficient 
 
 The result (26) should be compared with the rms distance achieved by a particle 
subjected to Brownian motion along the x-axis which from (14) is given by: 
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which indicates that diffusion and Brownian motion are different aspects of the same 
phenomenon, and that the diffusion coefficient, which is an experimentally found quantity is 
related to: 
 

kTD B
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where B is numerical factor related to the fact that diffusion deals with the flux of a very large 
number of particles, while Brownian motion refers to only one particle.  This factor is shown to 
be equal to one, and therefore using (1) the diffusion coefficient for a spherical particle in a liquid 
is: 
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Where R is the gas constant and N is Avogadro’s number.  
 
indicating that the diffusion coefficient is the ratio of kinetic vs. viscous effects.  
Furthermore, for the same particle the rms displacement from its origin is given by (27), namely:    
 

2rmsx Dt=                                                                                                                                                30 
 
Note that: 
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where c is the average velocity and λ  is the mean free path.  
 



 Diffusion coefficient and Reynolds number  

The Reynolds number Re results from grouping physical and geometric parameters into a 
single parameter when the variables and coefficient related by the Navier-Stokes equation are 
normalized.  The Reynolds number is typically defined for situations where a fluid is in motion 
relative to a surface.  Normalization is carried out by identifying a nominal density and viscosity, 
a velocity and a characteristic length or dimension (i.e., radius or diameter for spheres or circles, 
length and width for aircraft or ships, and the internal diameter for flow in a pipe or a sphere 
moving in a fluid). 

A simple example is flow in a pipe, for which Re is: 

2

Re VL V kinetic energyL L
V viscous dissipation

ρ ρ
µ µ

= = :  

where V is the mean fluid velocity (cm/s), L is the diameter of the pipe (cm), µ is the dynamic 
viscosity, of the fluid (dyne sec/cm2, poise) and ρ is the density of the fluid (g/cm³). 
 

It is apparent that D and Re are similar entities in that they involve the ratio of inertial 
and viscous effects, with the important difference that the diffusion coefficient is inversely 
proportional to the nominal dimension of the system, while Re is directly proportional to this 
parameter. 
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x Erf x x Erf x 

0.00 0.000 1.10 0.880 

0.10 0.112 1.20 0.910 

0.20 0.223 1.30 0.943 

0.30 0.328 1.40 0.952 

0.40 0.428 1.50 0.966 

0.50 0.520 1.60 0.976 

0.60 0.604 1.70 0.984 

0.70 0.678 1.80 0.989 

0.80 0.742 1.90 0.993 

0.90 0.797 2.00 0.995 

1.00 0.843 5.00 0.999 
 




